
Літак летить горизонтально зі швидкістю 360 км/год на висоті 122 м. Коли він пролітає над деякою
точкою поверхні Землі, з нього скидають вантаж. На якій відстані від цієї точки вантаж упаде на Землю? Опором повітря знехтуйте.

Ответы на вопрос

Ответ: 1245м
Объяснение:
Скорость свободного падения ≈9.8м/с
Тоисть груз упадёт за 12.45с
360/3600=0.1км/с
12.45*0.1= 1.245км (1245м)



To calculate the distance at which the cargo will fall to the ground when dropped from an airplane flying horizontally at a speed of 360 km/h at an altitude of 122 m, we can use the equations of motion. We will neglect air resistance, as stated in the question.
Initial Analysis
Let's break down the problem and identify the key variables: - Initial speed of the cargo: The cargo is initially moving horizontally with the same speed as the airplane, which is 360 km/h. - Initial height of the cargo: The cargo is dropped from an altitude of 122 m above the ground. - Acceleration due to gravity: The cargo will experience a constant downward acceleration due to gravity, which is approximately 9.8 m/s².Calculating Time of Flight
To determine the time it takes for the cargo to fall to the ground, we can use the equation of motion for vertical motion:h = ut + (1/2)gt²
Where: - h is the initial height of the cargo (122 m) - u is the initial vertical velocity of the cargo (0 m/s, as it is dropped) - g is the acceleration due to gravity (-9.8 m/s²) - t is the time of flight
Simplifying the equation, we get:
h = (1/2)gt²
Rearranging the equation to solve for t, we have:
t = sqrt((2h)/g)
Substituting the values, we get:
t = sqrt((2 * 122) / 9.8) ≈ 5.02 seconds
Therefore, it takes approximately 5.02 seconds for the cargo to fall to the ground.
Calculating Horizontal Distance
To calculate the horizontal distance traveled by the cargo during this time, we can use the equation of motion for horizontal motion:s = ut
Where: - s is the horizontal distance traveled by the cargo - u is the initial horizontal velocity of the cargo (360 km/h) - t is the time of flight (5.02 seconds)
Converting the initial horizontal velocity from km/h to m/s:
u = (360 km/h) * (1000 m/km) / (3600 s/h) ≈ 100 m/s
Substituting the values, we get:
s = (100 m/s) * (5.02 s) ≈ 502 m
Therefore, the cargo will fall to the ground at a horizontal distance of approximately 502 meters from the point it was dropped.
Please note that this calculation neglects air resistance, as stated in the question. In reality, air resistance would have a small effect on the horizontal distance traveled by the cargo.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili