
Тело двигалось прямолинейно 10 минут: сначала какое-то время равноускоренно, затем сразу
равнозамедленно до полной остановки. Путь, пройденный телом, составил 3 км. Какова максимальная скорость тела во время движения? Ответ дайте в м/с.

Ответы на вопрос

Путь - площадь под графиком скорости .
По условию - график скорости - треугольник от нулевых значений.
Площадь треугольника - половина произведения основания ( 600 секунд) на высоту ( максимальная скорость )
Откуда максимальная скорость равна два пути деленое на время
2*3000 / 600 = 10 м/с



Problem Analysis
We are given that an object moves in a straight line for 10 minutes. It starts with some time of constant acceleration and then immediately decelerates uniformly until it comes to a complete stop. The total distance covered by the object is 3 km. We need to find the maximum speed of the object during its motion in meters per second.Solution
To solve this problem, we can break it down into two parts: the first part where the object is accelerating and the second part where it is decelerating.Let's assume: - The time taken for acceleration is t1 minutes. - The time taken for deceleration is t2 minutes. - The maximum speed reached during acceleration is v_max m/s. - The maximum speed reached during deceleration is also v_max m/s.
We know that the total distance covered by the object is 3 km, which is equal to 3000 meters. We can use the equations of motion to find the values of t1, t2, and v_max.
Calculation
1. The distance covered during acceleration can be calculated using the equation: s1 = (1/2) * a * t1^2, where s1 is the distance covered during acceleration and a is the acceleration.2. The distance covered during deceleration can be calculated using the equation: s2 = v_max * t2 - (1/2) * a * t2^2, where s2 is the distance covered during deceleration.
3. The total distance covered is the sum of s1 and s2: s1 + s2 = 3000.
4. The time taken for the entire motion is 10 minutes, which is equal to 600 seconds: t1 + t2 = 600.
5. The maximum speed reached during acceleration and deceleration is the same, which is v_max.
We have two equations and two unknowns (t1 and t2). We can solve these equations simultaneously to find the values of t1 and t2.
Solution Steps
1. Rearrange the equation s1 + s2 = 3000 to solve for t2: t2 = (3000 - s1) / v_max.2. Substitute the value of t2 in the equation t1 + t2 = 600 to solve for t1: t1 + (3000 - s1) / v_max = 600.
3. Rearrange the equation to solve for t1: t1 = 600 - (3000 - s1) / v_max.
4. Substitute the values of s1 and v_max from the given information: - s1 = (1/2) * a * t1^2 - v_max = a * t1
5. Solve the equation s1 = (1/2) * a * t1^2 for a: a = (2 * s1) / t1^2.
6. Substitute the value of a in the equation v_max = a * t1 to solve for v_max: v_max = ((2 * s1) / t1^2) * t1.
7. Simplify the equation to find the value of v_max: v_max = (2 * s1) / t1.
8. Substitute the values of s1 and t1 from the given information: - s1 = (1/2) * a * t1^2 - t1 = 600 - (3000 - s1) / v_max.
9. Solve the equation to find the value of v_max.
10. Convert the value of v_max from km/h to m/s by multiplying it by 1000/3600.
Calculation
Let's calculate the value of v_max using the given information.From the given information, we know that the total distance covered by the object is 3 km, which is equal to 3000 meters.
Let's assume a value for s1 (distance covered during acceleration) and calculate the corresponding values of t1 and v_max.
Assume s1 = 1000 meters.
Using the equation s1 = (1/2) * a * t1^2, we can solve for t1: 1000 = (1/2) * a * t1^2.
Simplifying the equation, we get: t1^2 = (2000 / a).
Using the equation t1 = 600 - (3000 - s1) / v_max, we can solve for v_max: v_max = (3000 - s1) / (600 - t1).
Substituting the value of t1^2 from the first equation, we get: v_max = (3000 - s1) / (600 - sqrt(2000 / a)).
Now, let's substitute the value of s1 = 1000 meters and calculate the value of v_max.
Using the equation v_max = (3000 - s1) / (600 - sqrt(2000 / a)), we get: v_max = (3000 - 1000) / (600 - sqrt(2000 / a)).
Simplifying the equation, we get: v_max = 2000 / (600 - sqrt(2000 / a)).
Now, let's calculate the value of v_max using the given information.
Answer
The maximum speed of the object during its motion is approximately v_max m/s.Note: The exact value of v_max depends on the value of s1 (distance covered during acceleration) and a (acceleration), which are not provided in the given information. Therefore, we cannot provide an exact value for v_max without these additional details.


Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili