Вопрос задан 01.10.2023 в 10:12. Предмет Физика. Спрашивает Безрукова Лина.

из неподвижной лодки массой 100 кг на пристань прыгает мальчик массой 50 кг. найти скорость с

которой начнет даигаться лодка, если скорость мальчика в момент прыжка равна 5 м/с
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маяковский Максим.

Ответ:

По идее, если мальчик массой 50 кг прыгнул со скоростью 5 м/с, то лодка массой 100 кг должна двигаться в два раза медленнее, т.к 100:50=2 это во-первых, во-вторых , чем больше масса - тем медленнее будет двигаться тело. Получается ответ равен 2.5 м/с

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти скорость, с которой начнет двигаться лодка, когда мальчик прыгает с нее, мы можем использовать закон сохранения импульса. Согласно этому закону, сумма импульсов до и после события должна оставаться постоянной.

Импульс (переменная p) вычисляется как произведение массы на скорость: p=mvp = m \cdot v

Перед прыжком мальчика: Импульс лодки (p1p_1) до прыжка равен массе лодки (m1m_1) умноженной на ее скорость (v1v_1): p1=m1v1p_1 = m_1 \cdot v_1

Импульс мальчика (p2p_2) до прыжка равен массе мальчика (m2m_2) умноженной на его скорость (v2v_2): p2=m2v2p_2 = m_2 \cdot v_2

После прыжка мальчика: Импульс лодки (p3p_3) после прыжка будет равен массе лодки (m1m_1) умноженной на ее конечную скорость (v3v_3): p3=m1v3p_3 = m_1 \cdot v_3

Импульс мальчика (p4p_4) после прыжка будет равен массе мальчика (m2m_2) умноженной на его конечную скорость (v4v_4): p4=m2v4p_4 = m_2 \cdot v_4

Согласно закону сохранения импульса, сумма импульсов до прыжка должна равняться сумме импульсов после прыжка:

p1+p2=p3+p4p_1 + p_2 = p_3 + p_4

Подставляем значения:

m1v1+m2v2=m1v3+m2v4m_1 \cdot v_1 + m_2 \cdot v_2 = m_1 \cdot v_3 + m_2 \cdot v_4

Теперь подставляем известные значения: m1=100m_1 = 100 кг, m2=50m_2 = 50 кг, v2=5v_2 = 5 м/с.

Давайте решим уравнение для v3v_3:

1000+505=100v3+50v4100 \cdot 0 + 50 \cdot 5 = 100 \cdot v_3 + 50 \cdot v_4

250=100v3+50v4250 = 100 \cdot v_3 + 50 \cdot v_4

Теперь мы должны учесть, что мальчик и лодка движутся в противоположных направлениях, поэтому скорость мальчика (v4v_4) будет иметь противоположное направление и будет вычитаться из скорости лодки (v3v_3). Поэтому v4=v3v_4 = -v_3.

Теперь подставляем это обратно в уравнение:

250=100v3+50(v3)250 = 100 \cdot v_3 + 50 \cdot (-v_3)

250=100v350v3250 = 100v_3 - 50v_3

250=50v3250 = 50v_3

Теперь делим обе стороны на 50, чтобы найти v3v_3:

v3=25050=5м/сv_3 = \frac{250}{50} = 5 \, \text{м/с}

Итак, скорость, с которой начнет двигаться лодка после прыжка мальчика, будет равна 5м/с5 \, \text{м/с}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос