 
Шарик, подвешенный на невесомой пружине, совершает вертикальные колебания с периодом T=3,0 c. Каким
станет период колебаний, если снизу к шарику поднести горизонтальную плиту, с которой шарик будет периодически упруго сталкиваться? Расстояние от положения равновесия шарика до плиты равно половине амплитуды. 0
        0
         0
        0
    Ответы на вопрос
 
        найдем время которое требуется для прохождения расстояния от максимального до X=А\2
X=A*coswt
А\2=A*cоswt
cоswt=1\2
2п*t\T=п\6
t=T\12
значит новый период будет Tн=T-2t=T-T\6=5T\6=3*5\6=2,5 с
 0
                    0
                     0
                    0
                 
            Когда шарик совершает вертикальные колебания на невесомой пружине без внешних воздействий, его период T определяется только массой и жесткостью пружины, но не зависит от амплитуды колебаний или от расстояния до плиты.
Однако, когда снизу к шарику подносят горизонтальную плиту, с которой он периодически сталкивается, происходит изменение в динамике системы, и период колебаний будет изменен.
Для определения нового периода колебаний, обратимся к закону сохранения механической энергии. При максимальной амплитуде колебаний, когда шарик находится в положении максимального отклонения, вся потенциальная энергия пружины превращается в кинетическую энергию шарика и наоборот.
Масса шарика обозначим как m, а амплитуду вертикальных колебаний как A. Расстояние от положения равновесия до плиты равно половине амплитуды, т.е., A/2.
Находясь в максимально отклоненном положении, шарик обладает только кинетической энергией. По закону сохранения энергии:
1/2 * m * v^2 = 1/2 * k * A^2
где v - скорость шарика в максимальном отклонении, k - жесткость пружины.
Теперь предположим, что в момент столкновения с плитой, шарик обладает минимальной скоростью (равной нулю) и вся его энергия переходит в потенциальную энергию пружины. В этом положении пружина сжата на величину A/2.
1/2 * k * (A/2)^2 = 1/2 * m * v'^2
где v' - скорость шарика при соприкосновении с плитой.
Мы также знаем, что период колебаний T связан с жесткостью пружины k и массой m следующим образом:
T = 2 * π * √(m / k)
Теперь, сочетая оба уравнения, мы можем найти новый период колебаний T':
2 * π * √(m / k) = 2 * π * √(m / (2 * k))
Теперь массу m можно сократить:
√(1 / k) = √(1 / (2 * k))
Упрощая, получаем:
1 / k = 1 / (2 * k)
Теперь умножим обе части на 2k и получим:
2 = 1
Это уравнение невозможно. Возникает противоречие, и оно не имеет решения. Это означает, что снизу поднесенная плита не повлияет на период вертикальных колебаний шарика на невесомой пружине. Период останется равным T = 3,0 секунды.
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			