Вопрос задан 05.07.2023 в 18:23. Предмет Физика. Спрашивает Ушаков Никита.

В1. Найти циклическую частоту колебаний в контуре, емкость конденсатора в котором 16·10-10Ф,

индуктивность катушки 4·10 4Гн. В2. Определить индуктивность катушки колебательного контура, если емкость конденсатора равна 5 мкФ, а период колебаний 0,001 с.С1. Катушка сопротивлением 100 Ом, состоящая из 1000 витков, внесена в однородное магнитное поле. Площадь поперечного сечения каждого витка равна 5 см2. В течение некоторого времени индукция магнитного поляуменьшилась с 0,8 Тл до 0,3 Тл. Какой заряд индуцирован в проводнике заэто время?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Морозова Снежана.

В1

Дано

С=16*10^-10 Ф

L=4*10^-4 Гн

w-?

Решение

w=1/корень(L*C)

w=1/корень(4*10^-4*16*10^-10)=0,125*10^7 рад/с

Ответ :w=0,125*10^7 рад/с

_____________________

В2.

Дано

С=5мкФ=5*10^-6 Ф

Т=0,001 с

L-?

Решение

T=2П*корень(L*C)

L=T^2/(4П^2*С)

L=(0,001)^2/(39,4*5*10^-6)=5*10^-3 Гн

Ответ :L=5*10^-3 Гн

________________

С1.

Дано

R=100 Ом

N=1000

B1=0,8 Тл

В2=0,3 Тл

S=5см^2=5*10^-4 м^2

Q-?

Решение

I=E/R

E=-Ф/t

ЭДС индукции :

Е=N*B*S/t=-S(B2-B1) *N/t=S/(B1-B2) *N/t

Q=S*(B1-B2)*N/R

Q=5*10^-4*(0,8-0,3)*1000/100=25*10^-4=2,5мКл

Ответ :Q=2,5 мКл

________________

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

В1. Чтобы найти циклическую частоту колебаний в контуре, используем следующую формулу:

ω=1LC\omega = \frac{1}{\sqrt{LC}}

где:

  • ω\omega - циклическая частота (радианы в секунду)
  • LL - индуктивность катушки (Гн)
  • CC - емкость конденсатора (Ф)

Подставляя данное значение индуктивности L=4×104L = 4 \times 10^{-4} Гн и емкости C=16×1010C = 16 \times 10^{-10} Ф:

ω=1(4×104)(16×1010)\omega = \frac{1}{\sqrt{(4 \times 10^{-4}) \cdot (16 \times 10^{-10})}}

Рассчитаем численное значение:

ω14×1072.5×106рад/с\omega \approx \frac{1}{4 \times 10^{-7}} \approx 2.5 \times 10^6 \, \text{рад/с}

В2. Чтобы определить индуктивность катушки колебательного контура, можно воспользоваться следующей формулой для периода колебаний:

T=2πLCT = 2\pi \sqrt{LC}

где:

  • TT - период колебаний (с)
  • LL - индуктивность катушки (Гн)
  • CC - емкость конденсатора (Ф)

Мы знаем, что T=0.001T = 0.001 с и C=5×106C = 5 \times 10^{-6} Ф. Подставляя эти значения в формулу, можно решить уравнение относительно индуктивности LL:

0.001=2πL(5×106)0.001 = 2\pi \sqrt{L \cdot (5 \times 10^{-6})}

Решая это уравнение, получим:

L=0.00124π2(5×106)0.025ГнL = \frac{0.001^2}{4\pi^2 \cdot (5 \times 10^{-6})} \approx 0.025 \, \text{Гн}

С1. Для определения заряда, индуцированного в проводнике при изменении магнитного потока, можно использовать закон электромагнитной индукции:

Φ=BAcosθ\Phi = B \cdot A \cdot \cos{\theta}

где:

  • Φ\Phi - магнитный поток (Вб)
  • BB - индукция магнитного поля (Тл)
  • AA - площадь поперечного сечения проводника (м^2)
  • θ\theta - угол между магнитным полем и нормалью к площади

Изменение магнитного потока можно выразить как:

ΔΦ=B2AB1A\Delta \Phi = B_2 \cdot A - B_1 \cdot A

где:

  • B1B_1 - начальная индукция магнитного поля (0.8 Тл)
  • B2B_2 - конечная индукция магнитного поля (0.3 Тл)

Подставляем известные значения:

ΔΦ=(0.3Тл)(5см2)(0.8Тл)(5см2)\Delta \Phi = (0.3 \, \text{Тл}) \cdot (5 \, \text{см}^2) - (0.8 \, \text{Тл}) \cdot (5 \, \text{см}^2)

Переводим площадь в метры:

ΔΦ=(0.3Тл)(5×104м2)(0.8Тл)(5×104м2)\Delta \Phi = (0.3 \, \text{Тл}) \cdot (5 \times 10^{-4} \, \text{м}^2) - (0.8 \, \text{Тл}) \cdot (5 \times 10^{-4} \, \text{м}^2)

Вычисляем изменение магнитного потока:

ΔΦ=0.00025Вб\Delta \Phi = -0.00025 \, \text{Вб}

Теперь, используя закон электромагнитной индукции, можно выразить индуцированный заряд:

Q=ΔΦQ = -\Delta \Phi

Подставляем значение изменения магнитного потока:

Q=(0.00025Вб)=0.00025ВбQ = -(-0.00025 \, \text{Вб}) = 0.00025 \, \text{Вб}

Обратите внимание, что заряд в СИ измеряется в Кулонах (Кл), а не в Веберах (Вб).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос