Вопрос задан 05.07.2023 в 06:55. Предмет Физика. Спрашивает Савчук Дмитро.

Электродвигатель через редуктор вращает барабан на который наматывается трос. Диаметр барабана

Dб=0,7 м; масса барабана mб=80 кг. К тросу на крюке подвешен груз массой mгр=1500 кг. Передаточное отношение редуктора ip=10,8. Потери энергии в редукторе и барабане учитывается коэффициентами полезного действия: nр=0,85, nб=0,92. Номинальная частота вращения вала двигателя nном=1470 об/ мин. Определить момент инерции груза и барабана, приведенный к валу двигателя, и скорость подъема груза при номинальной частоте вращения вала двигателя.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Корсакова Варвара.

Ответ:

Объяснение:

Dб = 0,7 м

mб = 80 кг

mгр = 1500 кг

iр = 10,8

ηp = 0,85

ηб = 0,92

nном = 1470 об/мин = 24,5 об/с

_________________

J - ?

V - ?

1)

Передаточное отношение привода определяется из условия

iр = nном/nб

nб = nном / iр = 24,5 / 10,8 ≈ 2,27 об/с

Циклическая частота барабана:

ω = 2·π·nб = 2·3,14·2,27 ≈ 14,3  рад/с

2)

КПД:

η = ηp·ηб = 0,85·0,92 ≈ 0,78

3)

Линейная скорость внешних точек барабана:

V = ω· Dб / 1 = 14,3·0,7/2 ≈ 5 м/с

4)

Нагрузка на канат с учетом КПД:

F = mгр·g / η = 1500·10 / 0,78 ≈ 19200 Н

4)

Момент инерции барабана:

Jб = (1/2)·mб·(Dб/2)² = (1/2)·80·(0,7/2)² ≈ 5 кг·м²

Момент инерции груза

Jгр = m·(D/2)² = 1500·(0,7/2)² = 180 кг·м²

Суммарный момент:

J = 5 + 180 = 185 кг·м²


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте начнем с расчета момента инерции груза и барабана, приведенного к валу двигателя. Момент инерции можно выразить как сумму момента инерции груза и момента инерции барабана:

Jобщ=Jгруз+JбарабанJ_{\text{общ}} = J_{\text{груз}} + J_{\text{барабан}}

Момент инерции груза JгрузJ_{\text{груз}} можно вычислить используя формулу J=mr2J = m \cdot r^2, где mm - масса груза, rr - расстояние от оси вращения до центра масс груза.

Для барабана момент инерции JбарабанJ_{\text{барабан}} можно вычислить, используя формулу для момента инерции цилиндра: Jбарабан=12mбарабанаrбарабана2J_{\text{барабан}} = \frac{1}{2} m_{\text{барабана}} r_{\text{барабана}}^2, где mбарабанаm_{\text{барабана}} - масса барабана, rбарабанаr_{\text{барабана}} - радиус барабана.

Сначала найдем расстояние rr от центра вращения до центра масс груза. Так как груз подвешен на крюке к тросу, расстояние будет равно радиусу барабана rбарабанаr_{\text{барабана}}:

r=rбарабана=Dб2=0.7мr = r_{\text{барабана}} = \frac{D_{\text{б}}}{2} = 0.7 \, \text{м}

Теперь можем вычислить момент инерции груза и барабана:

Jгруз=mгрr2=1500кг×(0.7м)2=735кгм2J_{\text{груз}} = m_{\text{гр}} r^2 = 1500 \, \text{кг} \times (0.7 \, \text{м})^2 = 735 \, \text{кг} \cdot \text{м}^2

Jбарабан=12mбарабанаrбарабана2=12×80кг×(0.7м)2=19.6кгм2J_{\text{барабан}} = \frac{1}{2} m_{\text{барабана}} r_{\text{барабана}}^2 = \frac{1}{2} \times 80 \, \text{кг} \times (0.7 \, \text{м})^2 = 19.6 \, \text{кг} \cdot \text{м}^2

Суммируя оба момента инерции, получаем общий момент инерции:

Jобщ=Jгруз+Jбарабан=735кгм2+19.6кгм2=754.6кгм2J_{\text{общ}} = J_{\text{груз}} + J_{\text{барабан}} = 735 \, \text{кг} \cdot \text{м}^2 + 19.6 \, \text{кг} \cdot \text{м}^2 = 754.6 \, \text{кг} \cdot \text{м}^2

Теперь можем рассчитать скорость подъема груза vv при номинальной частоте вращения вала двигателя. Для этого воспользуемся законом сохранения энергии:

Eнач+Wполез=Eкон+WпотериE_{\text{нач}} + W_{\text{полез}} = E_{\text{кон}} + W_{\text{потери}}

где EначE_{\text{нач}} - начальная энергия груза, WполезW_{\text{полез}} - полезная работа, EконE_{\text{кон}} - конечная энергия груза, WпотериW_{\text{потери}} - работа, потерянная на преодоление потерь.

Полезная работа WполезW_{\text{полез}} равна изменению потенциальной энергии груза:

Wполез=mгрghW_{\text{полез}} = m_{\text{гр}} \cdot g \cdot h

где gg - ускорение свободного падения, hh - высота подъема.

Из начальной и конечной энергии груза:

Eнач=mгрghначE_{\text{нач}} = m_{\text{гр}} \cdot g \cdot h_{\text{нач}} Eкон=mгрghконE_{\text{кон}} = m_{\text{гр}} \cdot g \cdot h_{\text{кон}}

Потери энергии WпотериW_{\text{потери}} могут быть выражены как:

Wпотери=JобщΔωtW_{\text{потери}} = \frac{J_{\text{общ}} \cdot \Delta \omega}{t}

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Предметы
Задать вопрос