Вопрос задан 04.07.2023 в 07:09. Предмет Физика. Спрашивает Белявский Вова.

С балкона, находящегося на высоте h=10м над поверхностью земли, бросили два тела: одно -

вертикально вниз со скоростью v01=5 м/с, второе - вертикально вверх, тоже со скоростью v02 = 5 м/с. Через какое время Δt после падения на землю первого тела упадет второе? Ускорение свободного падения g = 10 м/с²
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Стрілець Віталій.

Ответ:

Δt = 1 с

Объяснение:

↓v₀₁ = 5 м/с

↑v₀₂ = 5 м/с

h₀ = 10 м

g = 10 м/с²

Δt - ?

--------------------

h₀ = v₀₁ t₁ + 0.5gt₁², здесь t₁ - время падения 1-го тела

5t₁² + 5t₁ - 10 = 0

t₁² + t₁ - 2 = 0

D = 1 + 8 = 9 = 3²

t₁₁ = 0.5(-1 - 3) = -2 (c) - знак (-) не совместим с физическим смыслом времени, поэтому данный корень не подходит

t₁₂ = 0.5(-1 + 3) = 1 (c)

Итак,  1-е тело, летящее вниз, достигнет земли за время t₁ = 1 с

Рассмотрим движение 2-го тела

v₂ = v₀₂ - gt, - закон изменения скорости 2-го тела, летящего вверх

В наивысшей точке скорость v₂ = 0, тогда

0 = v₀₂ - gt₁₂, здесь t₁₂ - время за которое тело 2 достигнет наибольшей высоты

t₁₂ =  v₀₂ : g = 5 : 10 = 0,5 с

2-е тело достигло максимальной высоты h₂, найдём эту высоту

h₂ = h₀ + v₀₂ t₁₂ - 0.5 g t₁₂²

h₂ = 10 + 5 · 0.5 - 0.5 · 10 · 0.5² = 11.25 (м)

Теперь 2-е тело начинает падать вниз с нулевой начальной скоростью с высоты h₂ = 11.25 м

h₂ = 0.5 gt₂₂²

Отсюда время падения 2-го тела

t₂₂ = √(2h₂/g) = √(2 · 11,25/10) = 1,5 (с)

Всё время движения 2-го тела равно

t₂ = t₁₂ + t₂₂ = 0.5 + 1.5 = 2 (c)

2-е тело упадёт на землю через Δt после падения 1-го тела

Δt = t₂ - t₁ = 2 - 1 = 1 (с)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной задачи мы можем использовать уравнение движения свободного падения для обоих тел:

  1. Для первого тела (падающего вниз):

Высота, с которой оно падает: h = 10 м. Начальная скорость: v01 = 5 м/с. Ускорение свободного падения: g = 10 м/с².

Используем уравнение для высоты падения:

h = v01 * t - (1/2) * g * t^2,

где t - время падения. Решим это уравнение относительно t:

10 = 5t - 5t^2. 5t^2 - 5t + 10 = 0.

Решив это квадратное уравнение, получим два значения времени. Однако мы интересуемся временем, когда тело достигнет земли (т.е., h = 0), так что выберем корень, который подходит:

t = (5 ± √(5^2 - 4 * 5 * 10)) / (2 * 5), t = (5 ± √(-75)) / 10.

Поскольку дискриминант отрицателен, у нас есть комплексные корни, что не имеет физического смысла в данном контексте.

  1. Для второго тела (поднимающегося вверх):

Высота, на которую оно поднимается: h = 10 м (начальная высота). Начальная скорость: v02 = 5 м/с (вверх). Ускорение свободного падения: g = 10 м/с².

Используем уравнение для высоты подъема:

h = v02 * t + (1/2) * g * t^2.

Подставим известные значения:

10 = 5t + 5t^2.

5t^2 + 5t - 10 = 0.

Теперь решим это квадратное уравнение:

t^2 + t - 2 = 0, (t - 1)(t + 2) = 0.

Здесь два значения времени: t = 1 с (это время, когда тело вернется на начальную высоту) и t = -2 с (физический смысл отсутствует, так как время не может быть отрицательным).

Итак, у нас есть два времени: t = 1 с для второго тела (поднимающегося вверх) и тот корень из первого уравнения, который имеет физический смысл. Таким образом, временной интервал между падением первого тела и подъемом второго тела составляет:

Δt = t - t1 = t - 1 с.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос