Вопрос задан 18.06.2023 в 18:55. Предмет Физика. Спрашивает Ларина Анна.

Значение температуры идеального одноатомного газа количество вещества которого 20 моль изобрано

изменили. Определите отданное газом кол-во теплоты, если значение начальной температуры газа 420К, а занимаемый им объем уменьшился в 1,6 раза по сравнению с первоначальным​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Степанов Владислав.

Ответ:

думаю пойдет и понятно............


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения задачи воспользуемся формулой Чарлза-Гая-Люссака:

\(P_1 \cdot V_1 / T_1 = P_2 \cdot V_2 / T_2\),

где \(P_1\), \(V_1\) и \(T_1\) - начальные давление, объем и температура газа соответственно, а \(P_2\), \(V_2\) и \(T_2\) - конечные.

Мы знаем, что количество вещества одноатомного газа равно 20 моль, а значит, молярная масса газа будет равна \(m = M / n\), где \(M\) - молярная масса газа, а \(n\) - количество вещества.

Зная массу газа, мы можем найти его плотность, используя формулу \(d = m / V_1\).

Используя уравнение состояния идеального газа \(PV = nRT\), где \(R\) - универсальная газовая постоянная, мы можем выразить начальное давление как \(P_1 = \frac{{nRT_1}}{{V_1}}\).

Так как объем газа уменьшился в 1,6 раза, то конечный объем будет равен \(V_2 = V_1 / 1,6\).

Подставим все известные значения в формулу Чарлза-Гая-Люссака и решим ее относительно конечной температуры:

\(\frac{{P_1 \cdot V_1}}{{T_1}} = \frac{{P_2 \cdot V_2}}{{T_2}}\),

\(\frac{{nRT_1}}{{V_1}} \cdot V_1 / T_1 = P_2 \cdot (V_1 / 1,6) / T_2\),

\(\frac{{nRT_1}}{{T_1}} = P_2 \cdot (V_1 / 1,6) / T_2\),

\(T_2 = \frac{{P_2 \cdot V_1 \cdot T_1 \cdot 1,6}}{{nRT_1}}\).

Теперь, чтобы найти отданное газом кол-во теплоты, воспользуемся формулой:

\(Q = nC_v \Delta T\),

где \(C_v\) - молярная удельная теплоемкость газа при постоянном объеме, \(\Delta T\) - изменение температуры.

Подставим известные значения и решим:

\(Q = nC_v (T_2 - T_1)\),

\(Q = 20 \cdot C_v ((P_2 \cdot V_1 \cdot T_1 \cdot 1,6)/(nRT_1) - T_1)\).

Таким образом, чтобы найти отданное газом количество теплоты, нам необходимо знать молярную удельную теплоемкость газа при постоянном объеме \(C_v\). Если данное значение известно, мы можем подставить все значения в полученную формулу и решить ее.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Физика

Последние заданные вопросы в категории Физика

Задать вопрос