
Вопрос задан 12.11.2020 в 01:12.
Предмет Физика.
Спрашивает Ситников Миша.
Вот такая вот у нас задача по физике: (учебник Л. Э. Генденштейна и А. Б. Кайдалова) Массы двух
стеклянных кубов различаются в 64 раза. Во сколько раз различаются длины их ребер? Решать я уже пробовала, в конечном итоге у меня получается: 64х : 2,5 (ρ стекла) = V

Ответы на вопрос

Отвечает Хански Амандәулет.
M₁ = ρV₁
m₂ = ρV₂
ρ - плотность стекла
Mассы кубиков отличаются в 64 раза. Это значит, что меньшую массу нужно умножить на 64, чтобы получить массу большего кубика:
m₂ = 64·m₁
Пусть ребро большего кубика в n раз больше ребра меньшего:
a₂ = n·a₁
Тогда объём большего кубика будет:
V₂ = a₂³ = (n·a₁)³ = n³·(a₁)³ = n³·a₁³
Но объем меньшего кубика как раз и равен
V₁ = a₁³
Значит,
V₂ = n³·a₁³ = n³·V₁
m₂ = ρ·V₂ = ρ·n³·V₁ = n³·ρ·V₁
m₂ = n³·ρ·V₁
Но ρ·V₁ = m₁
Значит,
m₂ = n³·m₁
По условию,
m₂ = 64·m₁
Значит,
n³ = 64
Значит, n = 4, потому что 4X4X4 = 4³ = 64
Следовательно, ребро кубика с массой, в 64 раза большей, больше ребра меньшего кубика в ∛64 = 4 раза.
Все эти говорения можно было бы расписать в одну строчку отношений
m₂/m₁ = 64m₁/m₁ = 64 = ρV₂/ρV₁ = V₂/V₁ = (a₂)³/(a₁)³ = (na₁/a₁)³ = n³(a₁/a₁)³ = n³
64 = n³
n = ∛(64) = 4
Если массы кубиков из стекла отличаются в 64 раза, то величины ребер кубиков отличаются в 4 раза.
Поскольку массы кубиков стекла пропорциональны объёму (при одинаковой плотности), и, поскольку объёмы пропорциональны третьей степени величины граней, то величины граней соотносятся как кубы третьей степени из соотношений масс.
Вообще-то это частный случай более общего правила: отношение объёмов равно отношению линейных размеров в третьей степени. А то, что справедливо для объёмов, справедливо и для масс - если речь идёт о массах тел одинаковой плотности, конечно.
m₂ = ρV₂
ρ - плотность стекла
Mассы кубиков отличаются в 64 раза. Это значит, что меньшую массу нужно умножить на 64, чтобы получить массу большего кубика:
m₂ = 64·m₁
Пусть ребро большего кубика в n раз больше ребра меньшего:
a₂ = n·a₁
Тогда объём большего кубика будет:
V₂ = a₂³ = (n·a₁)³ = n³·(a₁)³ = n³·a₁³
Но объем меньшего кубика как раз и равен
V₁ = a₁³
Значит,
V₂ = n³·a₁³ = n³·V₁
m₂ = ρ·V₂ = ρ·n³·V₁ = n³·ρ·V₁
m₂ = n³·ρ·V₁
Но ρ·V₁ = m₁
Значит,
m₂ = n³·m₁
По условию,
m₂ = 64·m₁
Значит,
n³ = 64
Значит, n = 4, потому что 4X4X4 = 4³ = 64
Следовательно, ребро кубика с массой, в 64 раза большей, больше ребра меньшего кубика в ∛64 = 4 раза.
Все эти говорения можно было бы расписать в одну строчку отношений
m₂/m₁ = 64m₁/m₁ = 64 = ρV₂/ρV₁ = V₂/V₁ = (a₂)³/(a₁)³ = (na₁/a₁)³ = n³(a₁/a₁)³ = n³
64 = n³
n = ∛(64) = 4
Если массы кубиков из стекла отличаются в 64 раза, то величины ребер кубиков отличаются в 4 раза.
Поскольку массы кубиков стекла пропорциональны объёму (при одинаковой плотности), и, поскольку объёмы пропорциональны третьей степени величины граней, то величины граней соотносятся как кубы третьей степени из соотношений масс.
Вообще-то это частный случай более общего правила: отношение объёмов равно отношению линейных размеров в третьей степени. А то, что справедливо для объёмов, справедливо и для масс - если речь идёт о массах тел одинаковой плотности, конечно.



Отвечает Чередниченко Александра.
M1= p*V1=p*a³
m2=p*V2=p*b³
m1/m2=64
a³/b³=64=4³
а/b=4
Ответ : длинны ребер отличаются в 4 раза
В сущности это тоже решение что и у Fatt , только для ленивых как я)
m2=p*V2=p*b³
m1/m2=64
a³/b³=64=4³
а/b=4
Ответ : длинны ребер отличаются в 4 раза
В сущности это тоже решение что и у Fatt , только для ленивых как я)


Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili