
В МАГАЗИНЕ ИМЕЮТСЯ ЛИМОНЫ,АПЕЛЬСИНЫ И МАНДАРИНЫ, ВСЕГО 740 КГ.ЕСЛИ БЫ ПРОДАЛИ 56КГ ЛИМОНОВ, 36КГ
АПЕЛЬСИНОВ И 34КГ МАНДАРИНОВ, ТО ОСТАВШИЕСЯ МАССЫ ЛИМОНОВ, АПЕЛЬСИНОВ И МАНДАРИНОВ ОКАЗАЛИСЬ БЫ РАВНЫМИ. СКОЛЬКО КИЛОГРАММОВ ФРУКТОВ КАЖДОГО ВИДА ИМЕЕТСЯ В МАГАЗИНЕ.

Ответы на вопрос

Всего=740 кг
Лимоны=?
Апельсины=?
Мандарины=?
Решение:
1)(740-(56+36+34))\3=204,6 (кг) Если бы оставшиеся фрукты поделили на 3.
2)204,6+56=260,6 (кг) Всего лимонов
3)204,6+36=240,6 (кг) Всего апельсинов
4)204,6+34=238,6 (кг) Всего мандаринов
Ответ: Лимонов - 260,6 кг, апельсинов - 240,6 кг, мандаринов - 238,6 кг.



740-(56+36+34)=614
614:3=204,6
Ответ:204,6 килограмм



Calculation of Fruit Quantities in the Store
To determine the quantities of lemons, oranges, and mandarins in the store, we can set up a system of equations based on the given information.
Let's assume the following variables: - L: mass of lemons in kilograms - A: mass of oranges in kilograms - M: mass of mandarins in kilograms
According to the given information, the total mass of all the fruits in the store is 740 kg. Therefore, we have the equation:
L + A + M = 740 -- Equation 1
We are also given that if 56 kg of lemons, 36 kg of oranges, and 34 kg of mandarins were sold, the remaining masses of lemons, oranges, and mandarins would be equal. This gives us the following equations:
L - 56 = A - 36 -- Equation 2
L - 56 = M - 34 -- Equation 3
Now, let's solve this system of equations to find the quantities of each fruit in the store.
Solving the System of Equations
To solve the system of equations, we can use the method of substitution. We'll start by solving Equation 2 for L:
L = A - 36 + 56 -- Equation 4
Simplifying Equation 4, we get:
L = A + 20 -- Equation 5
Next, we'll solve Equation 3 for L:
L = M - 34 + 56 -- Equation 6
Simplifying Equation 6, we get:
L = M + 22 -- Equation 7
Now, we can substitute Equation 5 and Equation 7 into Equation 1:
(A + 20) + A + (M + 22) = 740
Simplifying the equation, we get:
2A + 2M + 42 = 740
Rearranging the equation, we have:
2A + 2M = 698 -- Equation 8
Now, we have a system of two equations:
2A + 2M = 698 -- Equation 8 L + A + M = 740 -- Equation 1
To solve this system, we can subtract Equation 1 from Equation 8:
(2A + 2M) - (L + A + M) = 698 - 740
Simplifying the equation, we get:
A + M - L = -42 -- Equation 9
Now, we can substitute Equation 5 into Equation 9:
(A + 20) + M - (A + 20) = -42
Simplifying the equation, we get:
M - L = -42 -- Equation 10
From Equation 10, we can conclude that the difference between the mass of mandarins and the mass of lemons is -42 kg.
Since the mass cannot be negative, we can conclude that there was an error in the given information or calculations.
Unfortunately, based on the given information, we cannot determine the exact quantities of lemons, oranges, and mandarins in the store.
Please provide additional information or clarify the given information so that we can assist you further.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili