Вопрос задан 29.11.2023 в 11:16. Предмет Математика. Спрашивает Волк Кристина.

Площа і периметр ромба відповідно дорівнюють 24 см квадратних і 24 см знайти висоту ромба

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тароев Максим.

Ответ:

24:4=6

Пошаговое объяснение:

Щоб узнати площу треба всі сторони до дати (4) тобто 4 ділимо на 24)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Area and Perimeter of a Rhombus

To find the height of a rhombus, we first need to determine the area and perimeter of the rhombus. The area and perimeter of a rhombus can be calculated using different formulas.

The area of a rhombus can be found by multiplying the lengths of its diagonals and dividing the result by 2. The formula for the area of a rhombus is:

Area = (d1 * d2) / 2

where d1 and d2 are the lengths of the diagonals.

The perimeter of a rhombus can be calculated by multiplying the length of one side by 4. The formula for the perimeter of a rhombus is:

Perimeter = 4 * s

where s is the length of one side.

Solving the Problem

In this case, we are given that the area and perimeter of the rhombus are both equal to 24 cm. Let's denote the length of one side of the rhombus as s and the height as h.

We can start by finding the length of one side of the rhombus using the perimeter formula:

Perimeter = 4 * s

Since the perimeter is given as 24 cm, we can substitute this value into the formula:

24 = 4s

Simplifying the equation, we find:

s = 6 cm

Now that we know the length of one side, we can find the area of the rhombus using the area formula:

Area = (d1 * d2) / 2

Since the area is given as 24 cm², we can substitute this value into the formula:

24 = (d1 * d2) / 2

Simplifying the equation, we find:

d1 * d2 = 48

Since a rhombus has perpendicular diagonals that bisect each other, we can consider one diagonal as the base and the other diagonal as the height. Therefore, we can write:

Area = (d1 * h) / 2

Substituting the value of d1 * d2 from the previous equation, we have:

24 = (48 * h) / 2

Simplifying the equation, we find:

h = 1 cm

Therefore, the height of the rhombus is 1 cm.

Conclusion

In summary, given that the area and perimeter of the rhombus are both equal to 24 cm, we can determine that the length of one side of the rhombus is 6 cm and the height of the rhombus is 1 cm.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос