
А)|x|=-5,2 б)|x+15|=2 в)|7x-8|=8 г)(7x+5)(4x-13)=0 д)x(x-20)(x-21)(x+20)(x+21)=0


Ответы на вопрос

Ответ:
держи,ответ на фото вдлв





a) |x| = -5
The equation |x| = -5 represents the absolute value of x equal to -5. However, the absolute value of any real number is always non-negative. Therefore, there are no solutions to this equation. In other words, there is no real number x that satisfies the equation |x| = -5.
б) |x + 15| = 2
The equation |x + 15| = 2 represents the absolute value of (x + 15) equal to 2. To solve this equation, we need to consider two cases: when the expression inside the absolute value is positive and when it is negative.
Case 1: x + 15 > 0 If x + 15 > 0, then the equation simplifies to x + 15 = 2. Solving this equation gives us x = -13.
Case 2: x + 15 < 0 If x + 15 < 0, then the equation simplifies to -(x + 15) = 2. Solving this equation gives us x = -17.
Therefore, the solutions to the equation |x + 15| = 2 are x = -13 and x = -17.
в) |7x - 8| = 8
The equation |7x - 8| = 8 represents the absolute value of (7x - 8) equal to 8. Similar to the previous equation, we need to consider two cases: when the expression inside the absolute value is positive and when it is negative.
Case 1: 7x - 8 > 0 If 7x - 8 > 0, then the equation simplifies to 7x - 8 = 8. Solving this equation gives us x = 2.
Case 2: 7x - 8 < 0 If 7x - 8 < 0, then the equation simplifies to -(7x - 8) = 8. Solving this equation gives us x = 16/7.
Therefore, the solutions to the equation |7x - 8| = 8 are x = 2 and x = 16/7.
г) (7x + 5)(4x - 13) = 0
The equation (7x + 5)(4x - 13) = 0 represents the product of two expressions equal to zero. To find the solutions, we set each expression equal to zero and solve for x.
Setting 7x + 5 = 0, we get x = -5/7. Setting 4x - 13 = 0, we get x = 13/4.
Therefore, the solutions to the equation (7x + 5)(4x - 13) = 0 are x = -5/7 and x = 13/4.
д) x(x - 20)(x - 21)(x + 20)(x + 21) = 0
The equation x(x - 20)(x - 21)(x + 20)(x + 21) = 0 represents the product of five expressions equal to zero. To find the solutions, we set each expression equal to zero and solve for x.
Setting x = 0, we get one solution x = 0. Setting x - 20 = 0, we get x = 20. Setting x - 21 = 0, we get x = 21. Setting x + 20 = 0, we get x = -20. Setting x + 21 = 0, we get x = -21.
Therefore, the solutions to the equation x(x - 20)(x - 21)(x + 20)(x + 21) = 0 are x = 0, x = 20, x = 21, x = -20, and x = -21.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili