Вопрос задан 13.11.2023 в 06:57. Предмет Математика. Спрашивает Гаврилина Александра.

Уменьшите каждую сторону прямоугольника на 2 см. без этого прямоугольника. Периметр. Как это

изменилось? Объяснять
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Астафьев Иван.

Ответ:

пусть _ или | является 1см

допустим у нас прямоугольник размерами 10х4

__________

| |

| |

| |

|_________|

периметр прямоугольника находится по формуле P=2(a+b)

в нашем случае получаем P=2(10+4)=2*14=28см

если уменьшаем каждую сторону, тогда получаем прямоугольник 8х2

________

| |

|_______|

его периметр P=2(8+2)=2*10=20см

как мы видим - он уменьшился на 8 см, т.к. у нас 4 стороны уменьшились на 2 см (4*2=8см)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, давайте рассмотрим, как изменится периметр прямоугольника, если уменьшить каждую его сторону на 2 см.

Предположим, у нас есть прямоугольник со сторонами \(a\) и \(b\), и его периметр (P) определяется формулой:

\[ P = 2a + 2b \]

Если уменьшить каждую сторону на 2 см, новые стороны будут \(a - 2\) и \(b - 2\). Тогда новый периметр (\(P'\)) будет:

\[ P' = 2(a - 2) + 2(b - 2) \]

Раскроем скобки:

\[ P' = 2a - 4 + 2b - 4 \]

Сгруппируем подобные члены:

\[ P' = 2a + 2b - 8 \]

Теперь сравним новый периметр (\(P'\)) с изначальным периметром (\(P\)):

\[ P' = P - 8 \]

Таким образом, если уменьшить каждую сторону прямоугольника на 2 см, периметр уменьшится на 8 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос