Вопрос задан 12.11.2023 в 17:52. Предмет Математика. Спрашивает Мавлютова Элина.

41. Скорость велосипедиста в 5 раз больше скорости пешехода. Однажды они отправились одновременно

навстречу друг другуиз пунктов, расстояние между которыми 30 км. Какой путь про-едет велосипедист до встречи с пешеходом?2 - 0​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сериков Алдияр.

Ответ:

Пошаговое объяснение:

30:5=6-скорость пешехода

30-6=24 км проехал велосепедист

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Пусть скорость пешехода равна V км/ч, тогда скорость велосипедиста будет равна 5V км/ч.

Мы знаем, что расстояние между ними составляет 30 км.

Пусть время, за которое встретятся велосипедист и пешеход, будет равно t часов.

Велосипедист проедет за это время расстояние, равное его скорости умноженное на время: Путь велосипедиста = (5V * t) км.

Пешеход также проедет расстояние, равное его скорости умноженное на время: Путь пешехода = (V * t) км.

Так как они встречаются в одной точке, то сумма их путей равна расстоянию между ними: (5V * t) + (V * t) = 30.

Упростим это уравнение: 6V * t = 30, V * t = 5.

Находим значение t, деля обе части уравнения на V: t = 5 / V.

Подставляем найденное значение t в выражение для пути велосипедиста: Путь велосипедиста = (5V * t) = 5V * (5 / V) = 25 км.

Значит, велосипедист проедет 25 км до встречи с пешеходом.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос