Вопрос задан 04.11.2023 в 07:15. Предмет Математика. Спрашивает Самсонова Анастасия.

-10=y-3. -10=-3+x. -1=y-3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Смирнов Ярослав.

Ответ:1. y=-7, 2. x=-7, 3. y=2

1. -y=10-3

y=-10+3

y=-7

2. -x=-3+10

x=3-10

x=-7

3. -y=-3+1

y=3-1

y=2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте решим эту систему уравнений по шагам.

У вас есть следующая система уравнений:

1) \(-10 = y - 3\) 2) \(-10 = -3 + x\) 3) \(-1 = y - 3\)

Давайте начнем с уравнения 1:

\(-10 = y - 3\)

Чтобы изолировать \(y\), добавим 3 к обеим сторонам уравнения:

\[y - 3 = -10 + 3\] \[y = -7\]

Теперь мы знаем, что \(y = -7\).

Перейдем ко второму уравнению:

\(-10 = -3 + x\)

Чтобы изолировать \(x\), добавим 3 к обеим сторонам уравнения:

\(-10 + 3 = -3 + x\) \(-7 = x\)

Таким образом, мы получаем \(x = -7\).

Теперь перейдем к третьему уравнению:

\(-1 = y - 3\)

Мы уже знаем, что \(y = -7\), поэтому подставим это значение в уравнение:

\(-1 = -7 - 3\) \(-1 = -10\)

Однако это утверждение неверно, так как -1 не равно -10.

Таким образом, у вас возникло противоречие между значениями, которые мы нашли для \(x\) и \(y\) в первых двух уравнениях, и третьим уравнением. Скорее всего, ошибка возникла в одном из уравнений или в процессе решения системы. Пожалуйста, перепроверьте уравнения и уточните их, если возможно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос