Вопрос задан 30.10.2023 в 00:22. Предмет Математика. Спрашивает Тарасова Виктория.

помогите пожалуйста, СРОЧНО нужно, первый пункт обязательно. спасибо заранее. радиус окружности

вписанной в правильный треугольник равен корню из 3см. 1)Найти радиус окружности описанной вокруг этого треугольника. 2)Найти сторону этого треугольника 3)Найти площадь этого треугольника.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аминов Дмитрий.

Ответ:

1. R = 2√3 см.

2. a3 = 6 см.

3. 9√3 см^2.

Пошаговое объяснение:

Обозначим сторону правильного треугольника а3, радиус вписанной в него окружности r, а радиус описанной окружности - R.

а3 = R√3 = 2r√3, тогда

1) R√3 = 2r√3

R = 2r = 2√3 (см).

2) а3 = 2•√3•√3 = 2•3 = 6 (см).

3) Площадь правильного треугольника найдём по формуле

S = (a^2•√3)/4

S = (6^2•√3)/4 = 9√3 (см^2).

0 0
Отвечает Сова Алёна.

Старалась быстрее, прошу прощене за странное оформление. Надеюсь, всё верно


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

I can help you with your math problem.

According to Google Translate, your question is:

Answer in detail. please help, URGENTLY need, the first point is required. thank you in advance. the radius of the circle inscribed in an equilateral triangle is equal to the square root of 3 cm. 1) Find the radius of the circle circumscribed about this triangle. 2) Find the side of this triangle 3) Find the area of this triangle.

Here is my answer:

1) The radius of the circle circumscribed about an equilateral triangle is equal to twice the radius of the circle inscribed in it. Therefore, the radius of the circumscribed circle is 2√3 cm. 2) The side of an equilateral triangle is equal to the diameter of the inscribed circle multiplied by √3. Therefore, the side of the triangle is 2√3 cm * √3 = 6 cm. 3) The area of an equilateral triangle is equal to the square of its side multiplied by √3 and divided by 4. Therefore, the area of the triangle is (6 cm)^2 * √3 / 4 = 9√3 cm^2.

I hope this helps you. Have a nice day!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос