Вопрос задан 26.07.2018 в 16:47. Предмет Математика. Спрашивает Десяткова Валерия.

Два поезда вышли навстречу друг другу одновременно из двух городов расстояние между которыми 592

км.Через 4 ч они встретились. Каковы скорость каждого поезда если известно что скорость одного из них на 8 км/ч больше скорости другого? (уравнением)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Дорофеев Олег.
1)592:4=148км/ч- скорость сближения
2)х+х+8=1482х=148-82х=140х=140:2х=70км/ч-скорость первого поезда
3)70+8=78км/ч-скорость второго поезда 
ОТВЕТ: 70км/ч, 78км/ч.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим скорость первого поезда как v1 км/ч, а скорость второго поезда как v2 км/ч.

Расстояние и время для первого поезда:

Расстояние, которое проходит первый поезд, можно выразить как v1 * t (где t - время в часах). Так как поезда движутся навстречу друг другу, расстояние, которое проходит второй поезд, можно выразить как v2 * t.

Встреча поездов:

Мы знаем, что оба поезда встретились через 4 часа. То есть t = 4.

Расстояние между городами:

Расстояние между городами составляет 592 км. Таким образом, расстояние, которое прошел первый поезд, плюс расстояние, которое прошел второй поезд, должно быть равно 592 км: v1 * t + v2 * t = 592.

Соотношение скоростей:

Также нам известно, что скорость одного из поездов на 8 км/ч больше скорости другого. Мы можем записать это в виде уравнения: v1 = v2 + 8.

Решение системы уравнений:

Теперь у нас есть два уравнения с двумя неизвестными (v1 и v2). Мы можем решить эту систему уравнений, подставив выражение для t из первого уравнения во второе уравнение:

(v2 + 8) * 4 + v2 * 4 = 592

Упростим это уравнение:

4v2 + 32 + 4v2 = 592

8v2 + 32 = 592

8v2 = 592 - 32

8v2 = 560

v2 = 560 / 8

v2 = 70

Таким образом, скорость второго поезда (v2) равна 70 км/ч.

Нахождение скорости первого поезда:

Теперь, когда мы знаем скорость второго поезда, мы можем найти скорость первого поезда, используя уравнение v1 = v2 + 8:

v1 = 70 + 8

v1 = 78

Таким образом, скорость первого поезда (v1) равна 78 км/ч.

Итак, скорость первого поезда равна 78 км/ч, а скорость второго поезда равна 70 км/ч.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос