
Найти производную функции: у=arccos x/ корень из 1+2 sin x


Ответы на вопрос




Calculating the Derivative of the Function
To find the derivative of the function у = arccos(x) / √(1 + 2sin(x)), we can use the chain rule and the derivative rules for trigonometric functions.
Let's break down the steps:
1. Apply the chain rule to the function arccos(x): - The derivative of arccos(x) is -1 / √(1 - x^2). - Multiply this derivative by the derivative of the inner function, which is 1.
So, the derivative of arccos(x) is -1 / √(1 - x^2).
2. Apply the chain rule to the function √(1 + 2sin(x)): - The derivative of √(1 + 2sin(x)) is (cos(x)) / √(1 + 2sin(x)). - Multiply this derivative by the derivative of the inner function, which is 2cos(x).
So, the derivative of √(1 + 2sin(x)) is 2cos^2(x) / √(1 + 2sin(x)).
3. Combine the derivatives using the quotient rule: - The derivative of у = arccos(x) / √(1 + 2sin(x)) is given by:
(derivative of numerator * denominator - numerator * derivative of denominator) / (denominator^2).
Substituting the derivatives we found earlier, we get:
( -1 / √(1 - x^2) * √(1 + 2sin(x)) - arccos(x) * 2cos^2(x) / √(1 + 2sin(x)) ) / ( √(1 + 2sin(x))^2 ).
Simplifying this expression further is possible, but it may not lead to a significantly simpler form.
Please note that the above derivative is a general expression and can be further simplified depending on the specific value of x.
I hope this helps! Let me know if you have any further questions.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili