Вопрос задан 26.10.2023 в 12:14. Предмет Математика. Спрашивает Рудакова Ира.

Помогите пожалуйста,завтра аттестация,не понимаю,решить по дифференцированию:

а)y=lnx+2sinx+1/2x^2 б) y=(2x+4x^2+1/2x^2+1)
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лебедев Павел.
А)y=lnx+2sinx+1/2x^2
y`=1/x+2cosx-1/x³
б)y=(2x+4x^2+1/2x^2+1)
y`=[(2+8x)(2x
²+1)-4x(2x+4x²)]/(2x²+1)²=
=(4x²+2+16x³+8x-8x²-16x³)/(2x²+1)²=(2+8x-4x²)/(2x²+1)²
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу вам решить эти задачи по дифференцированию.

а) y = ln(x) + 2sin(x) + (1/2)x^2

Чтобы найти производную этой функции, примените правила дифференцирования для каждого члена отдельно.

  1. Производная ln(x) равна 1/x.
  2. Производная 2sin(x) равна 2cos(x).
  3. Производная (1/2)x^2 равна x.

Теперь объединим эти производные:

y' = (1/x) + 2cos(x) + x

Это является производной данной функции.

б) y = (2x + 4x^2 + (1/2)x^2 + 1)

Также примените правила дифференцирования для каждого члена отдельно.

  1. Производная 2x равна 2.
  2. Производная 4x^2 равна 8x.
  3. Производная (1/2)x^2 равна x.
  4. Производная константы 1 равна 0 (поскольку производная постоянной равна нулю).

Теперь объединим эти производные:

y' = 2 + 8x + x + 0

y' = 2 + 9x

Это является производной данной функции.

Теперь у вас есть производные обоих функций. Удачи на аттестации!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос