Вопрос задан 24.10.2023 в 17:14. Предмет Математика. Спрашивает Третьякова Валерия.

Найдите целые решения системы неравенств. {3,4x-15<_0,2x+4,2 {15,4x-21,3<20,6x+15,1​

Смотреть ответ Radka2008 Radka2008 Ответ: Ответ изобразила на координатной прямой
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения целых решений системы неравенств, давайте начнем с первой неравенства:

  1. 4x - 15 ≤ 0

Чтобы найти решение этой неравенства, добавим 15 к обеим сторонам:

4x ≤ 15

Теперь разделим обе стороны на 4:

x ≤ 15 / 4

x ≤ 3.75

Теперь перейдем ко второй неравенству:

  1. 4x - 21.3 < 20.6x + 15.1

Давайте избавимся от переменной x, перенося все x-термины на левую сторону и числовые термины на правую сторону:

4x - 20.6x < 15.1 + 21.3

Сокращаем x:

-16.6x < 36.4

Теперь делим обе стороны на -16.6, при этом меняется знак неравенства:

x > 36.4 / (-16.6)

x > -2.1928

Теперь у нас есть два неравенства:

  1. x ≤ 3.75
  2. x > -2.1928

Чтобы найти целые решения системы, мы должны найти пересечение этих двух интервалов. Пересечение этих интервалов - это интервал, который удовлетворяет обоим неравенствам.

Интервалы:

  1. x ≤ 3.75
  2. x > -2.1928

Пересечение этих интервалов - это интервал от -2.1928 до 3.75, исключая граничные точки:

-2.1928 < x < 3.75

Целые числа в этом интервале - это -2, -1, 0, 1, 2, 3. Итак, целые решения системы неравенств - это эти целые числа:

x = -2, -1, 0, 1, 2, 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос