
Функция f(x)=7+4x−x2 принимает наибольшее значение при Выберите один ответ: а)x=3 б)x=4 в)x=5
г)x=2 д)x=1

Ответы на вопрос

Відповідь: г) х = 2 .
Покрокове пояснення:
Функція f(x) = 7 + 4x − x² ; - квадратична ; а = - 1 < 0 , тому вітки
параболи ( графік функції ) напрямлені вниз . Найбільше значення
функція має у вершині параболи :
х₀ = - b/( 2a ) = - 4/( 2* (- 1 ) ) = 2 ; y₀ = 7 + 4*2 - 2² = 15 - 4 = 11 .
( 2 ; 11 ) - вершина параболи .
В - дь : г) х = 2 .



Чтобы найти значение x, при котором функция f(x) = 7 + 4x - x^2 принимает наибольшее значение, нужно найти вершину параболы, заданной этой функцией. Парабола будет направлена вниз (отрицательный коэффициент при x^2), и её вершина будет представлять наибольшее значение функции.
Формула вершины параболы: x_vertex = -b / (2a), где a = -1 (коэффициент при x^2) и b = 4 (коэффициент при x).
x_vertex = -4 / (2 * (-1)) = -4 / (-2) = 2.
Таким образом, функция f(x) принимает наибольшее значение при x = 2. Ваш ответ: г) x=2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili