
X - 3 < - 2 / x - 2 )))))


Ответы на вопрос

x - 3 < - 2 / x - 2
(х²-3х+2+2х)/х<0
(х²-х+2)/х<0
х²-х+2 больше нуля при любом х, т.к. дискриминант равен 1-8=-7 - отрицательный, а первый коэффициент равен 1, положительных.
Значит, при х меньшем нулю выполняется данное неравенство.
__________0_________
- +
Ответ х∈(-∞;0)



Ответ:
Пошаговое объяснение:
Решение на фото




It looks like you have a complex inequality with a lot of parentheses. Let's simplify it step by step.
The given inequality is: X - 3 < -2 / (x - 2)
First, let's get rid of the fraction by multiplying both sides of the inequality by (x - 2), but we need to be careful about the sign of (x - 2):
- If x - 2 is positive (greater than zero), then we don't need to change the direction of the inequality.
- If x - 2 is negative (less than zero), we should reverse the direction of the inequality.
Now, we'll consider both cases:
Case 1: (x - 2) is positive (x > 2)
(x - 2) * (x - 3) < -2
Now, let's expand and simplify:
x^2 - 5x + 6 < -2
Subtract -2 from both sides:
x^2 - 5x + 6 - (-2) < 0
x^2 - 5x + 8 < 0
Now, we have a quadratic inequality. We can solve it by finding the critical points, which are the values of x that make the expression equal to zero:
x^2 - 5x + 8 = 0
This quadratic equation doesn't have real solutions because the discriminant (b^2 - 4ac) is negative.
So, for this case (x > 2), there are no real solutions.
Case 2: (x - 2) is negative (x < 2)
In this case, we need to reverse the direction of the inequality:
-(x - 2) * (x - 3) < -2
Now, let's expand and simplify:
-(x^2 - 5x + 6) < -2
Distribute the negative sign:
-x^2 + 5x - 6 < -2
Add 2 to both sides:
-x^2 + 5x - 6 + 2 < 0
-x^2 + 5x - 4 < 0
Now, we have a quadratic inequality. We can solve it by finding the critical points:
x^2 - 5x + 4 = 0
Factor the quadratic:
(x - 4)(x - 1) = 0
Set each factor equal to zero:
x - 4 = 0 x = 4
x - 1 = 0 x = 1
So, the critical points are x = 1 and x = 4.
Now, we can test the intervals between these critical points:
When x < 1: -x^2 + 5x - 4 < 0 is satisfied.
When 1 < x < 4: -x^2 + 5x - 4 < 0 is satisfied.
When x > 4: -x^2 + 5x - 4 < 0 is not satisfied.
Therefore, the solution to the original inequality is:
x < 1 or 1 < x < 4 (the solution is in the form of intervals).


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili