
1)2sin²×-sin²x 2)sin²40°+cos²40° 3)cos(3p/2+a)


Ответы на вопрос

Ответ:I hope its clear
Пошаговое объяснение:




Let's solve each of these trigonometric expressions one by one:
- 2sin²x - sin²x:
To simplify this expression, we'll combine like terms. Since sin²x appears in both terms, we can factor it out:
2sin²x - sin²x = sin²x(2 - 1)
Now, simplify the constants:
sin²x(2 - 1) = sin²x(1)
Finally, any number multiplied by 1 is itself, so:
sin²x(1) = sin²x
So, the simplified form of 2sin²x - sin²x is sin²x.
- sin²40° + cos²40°:
This expression represents the trigonometric identity known as the Pythagorean Identity, which states that for any angle θ:
sin²θ + cos²θ = 1
In this case, θ is 40 degrees. So, using the Pythagorean Identity:
sin²40° + cos²40° = 1
So, the value of sin²40° + cos²40° is 1.
- cos(3π/2 + α):
To find the value of cos(3π/2 + α), we need to consider the properties of the cosine function. In particular, we can use the angle sum formula for cosine, which is:
cos(A + B) = cos(A)cos(B) - sin(A)sin(B)
In this case, A = 3π/2 and B = α. So, substituting these values into the formula:
cos(3π/2 + α) = cos(3π/2)cos(α) - sin(3π/2)sin(α)
Now, let's determine the values of cos(3π/2) and sin(3π/2):
cos(3π/2) = 0 (cosine is 0 at 3π/2) sin(3π/2) = -1 (sine is -1 at 3π/2)
So, the expression becomes:
cos(3π/2 + α) = 0 * cos(α) - (-1) * sin(α)
Simplify further:
cos(3π/2 + α) = 0 + sin(α)
Therefore, the value of cos(3π/2 + α) is sin(α).


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili