Вопрос задан 30.09.2023 в 17:49. Предмет Математика. Спрашивает Серая Аня.

ПЖ СРОЧНО ОЧЕНЬ! ДАЮ 25 БАЛЛОВ! 4. В прямоугольном треугольнике АВK ∠ K=90, ∠ А=60. Найдите

гипотенузу и меньший катет этого треугольника, если известно, что их сумма равна 21,3 см. ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Афанасьева Анна.

Ответ:

Гипотенуза будет 14,2

Меньший катет будет 7,1

Пошаговое объяснение:

Нам известно,что один из углов в прямоугольном треугольнике равен 60°,соответственно другой угол будет равен 30°.

Меньшая сторона треугольника будет находиться против меньшего угла

Известно,что катет против 30 равен половине гипотенузы. Катет,находящийся против 30° будет меньшим.

Исходя из всего вышесказанного составляем уравнение

2х + х = 21,3

3х = 21,3

х = 7,1

7,1 * 2 = 14,2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи мы можем использовать знание о тригонометрических соотношениях в прямоугольных треугольниках и факте, что сумма гипотенузы и катета равна 21,3 см.

Дано: ∠K = 90° (прямой угол) ∠А = 60° Гипотенуза + Меньший катет = 21,3 см

Мы знаем, что в прямоугольном треугольнике с углом 60° и гипотенузой H (гипотенуза) и катетами A и B:

sin(60°) = A / H

sin(60°) = √3 / 2

Следовательно,

A = (sin(60°)) * H = (√3 / 2) * H

Также у нас есть:

H + A = 21,3 см

Теперь мы можем подставить значение A из первого уравнения во второе уравнение:

H + (√3 / 2) * H = 21,3 см

(1 + √3 / 2) * H = 21,3 см

Теперь давайте найдем значение H:

H = (21,3 см) / (1 + √3 / 2)

H = (21,3 см) / (2 + √3)

Для упрощения этой дроби, мы можем умножить и поделить числитель и знаменатель на (2 - √3), чтобы избавиться от иррационального числа в знаменателе:

H = [(21,3 см) * (2 - √3)] / [(2 + √3) * (2 - √3)]

H = [(21,3 см) * (2 - √3)] / (4 - 3)

H = [(21,3 см) * (2 - √3)] / 1

H = 21,3 см * (2 - √3)

H ≈ 21,3 см * (2 - 1,732) ≈ 21,3 см * 0,268 ≈ 5,70 см

Теперь мы найдем значение меньшего катета, используя значение A:

A = (√3 / 2) * H

A = (√3 / 2) * 5,70 см ≈ 4,94 см

Итак, гипотенуза прямоугольного треугольника равна приближенно 5,70 см, а меньший катет примерно 4,94 см.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос