Вопрос задан 27.09.2023 в 17:00. Предмет Математика. Спрашивает Соколов Кирилл.

Помогите пожалуйста решить. |2,4|•|-1,5|=. |-18,5|+|13,4|=

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Разумовская Наташа.

Ответ:

|2,4|*|-1,5|= 1/10

|-18,5|+|13,4|=31,9

при нахождении модуля, отрицательные числа становятся натуральными, тоесть убирается минус

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим каждое выражение по очереди.

  1. |2,4| • |-1,5|:

Для вычисления модуля комплексного числа a + bi, где a и b - действительные числа, вы можете использовать формулу: |a + bi| = √(a^2 + b^2).

Для первого выражения: |2,4| = √(2^2 + 4^2) = √(4 + 16) = √20.

|-1,5| = √((-1)^2 + 5^2) = √(1 + 25) = √26.

Теперь у нас есть: |2,4| • |-1,5| = √20 • √26.

Чтобы упростить эту сумму, вы можете перемножить подкоренные выражения: √(20 • 26) = √(520).

  1. |-18,5| + |13,4|:

Аналогично, для второго выражения: |-18,5| = √((-18)^2 + 5^2) = √(324 + 25) = √349.

|13,4| = √(13^2 + 4^2) = √(169 + 16) = √185.

Теперь у нас есть: |-18,5| + |13,4| = √349 + √185.

Эти выражения уже упрощены, и вы можете выразить результат как сумму двух корней: √349 + √185.

Теперь вы можете просто записать результат в виде числа или приблизить его, если требуется более точное значение.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос