Вопрос задан 27.09.2023 в 00:56. Предмет Математика. Спрашивает Нурмаханбет Нуралы.

Найти все корни многочлена f(x)=x^5-8x^3+24x^2-28x+16 зная что 1 -i является двукратным корнем

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Марков Максим.

Ответ:

Контрольная работа по теме: Многочлены. 10 класс (с решением)

Задача 1.

Проверить по определению, будет ли число 2 корнем многочлена:

а) f(x) = x5 - 4x4 + 7x3 - 24;

б) f(x) = 5x5 + 4x3 - 7x2 + 2.

Решение:

Подставляя вместо переменной число 2, имеем:

а) f(x) = 25 - 4·24 + 7·23 - 24 = 32 - 64 + 56 - 24 = 0. Следовательно, 2 - корень многочлена.

б) f(x) = 5·25 + 4·23 - 7·22 + 2 = 160 + 32 - 28 + 2 = 166  0. Следовательно, 2 - не является корнем многочлена.

Задача 2.

При помощи схемы Горнера проверить, является ли число с корнем многочлена f(x) = 4x6 - x5 - 6x4 + 3x3 + 50x - 68:

а) с = 3;

б) с = -2.

Решение:

В первую строку таблицы записываем коэффициенты многочлена (с учетом того, что при степени, равной 2 коэффициент равен нулю), значения во второй строке подсчитываем, пользуясь формулами.

а)

4

3·4- 1 = 11

3·11- 6= 27

3·27+3 = 84

3·84+0 = 252

3·252+50= 806

3·806-68 = 2350  0

По следствию из теоремы Безу (многочлен не делится нацело на (х - 3)), делаем вывод, что число 3 корнем многочлена не является.

б)

4

-2·4-1 = -9

-2·(-9)-6= 12

-2·12+3 = -21

-2·(-21)= 42

-2·42+50= -34

-2·(-34)-68= 0

По следствию из теоремы Безу - многочлен делится нацело на (х - (-2)) = (х + 2) - делаем вывод о том, что число -2 является корнем многочлена.

Задача 3.

Какова кратность корня х = -1 многочлена f(x) = x5 + 4x4 + 5x3 + x2 - 2x - 1?

Решение:

Проверяем по схеме Горнера, подсчитывая каждую следующую строку в зависимости от коэффициентов предыдущей:

Таким образом получаем, что многочлен имеет три множителя (х - (-1)) = (х + 1) и представим в виде f(x)= (х + 1)3(х2 + х - 1), где коэффициенты многочлена х2 + х - 1 взяты из предпоследней строки таблицы, в которой получен последний нулевой остаток.

Ответ: кратность корня равна трем.

Задача 4.

Отделить кратные корни многочлена f(x) = x5 - 2x4 - x3 + 5 x2 - 4x + 1.

Решение:

Если многочлен имеет корень кратности k, то его производная имеет этот же корень кратности (k - 1). Найдем производную данного многочлена:

f /(x) = 5x4 - 8x3 - 3x2 + 10x - 4

Найдем наибольший общий делитель многочлена и его производной по алгоритму Евклида:

(f(x), f /(x)) = x2 - 2x + 1. Заметим, что это полный квадрат (x - 1)2, следовательно, f /(x) содержит корень 1 кратности 2, а f(x) содержит этот корень 1 кратности 2 + 1 = 3. Т.к. в наибольшем общем делителе других множителей нет, то и кратных корней у многочлена тоже больше нет.

Разделим f(x) на (x - 1)3 по схеме Горнера:

Получим f(x) = (x - 1)3(х2 + х - 1).Остальные 2 корня многочлена - простые (в этом случае действительные иррациональные числа).

Ответ: f(x) = (x - 1)3(х2 + х - 1).

Задача 5.

Разложить многочлен f(x) = x6 + x5 - 4x4 - 2x3 + 5x2 + x - 2 в произведение линейных множителей, отделив его кратные корни.

Решение:

f /(x) = 6x5 + 5x4 - 16x3 - 6x2 + 10x + 1

(f(x), f /(x)) = x3 - x2 - x + 1

Т.к. наибольший общий делитель может тоже содержать кратные множители, продолжим процесс и найдем f //(x):

f //(x) = 30x4 + 20x3 - 48x2 - 12x + 10

( f /(x), f //(x)) = x - 1. Следовательно, в f //(x)) имеется корень равный 1 кратности 1, значит в f /(x) этот корень входит с кратностью 2. Разделим первую производную многочлена на (x - 1)2 = (х2 - 2х + 1). Получим: f /(x) = (x - 1)2(х + 1). Т.е. в f /(x) корень равный 1 входит с кратностью 2. Значит в f (x) он входит с кратностью 3. В f /(x) корень равный -1 входит с кратностью 1, значит в f (x) он входит с кратностью 2. Т.к. f (x) - многочлен шестой степени, а найденные нами корни кратности - 2 и 3, то у f (x) есть еще один корень, который является простым.

Разделим f (x) на (x - 1)3 и на (x + 1)2 по схеме Горнера:

Получим: f (x) = (x - 1)3(x + 1)2(х + 2)

Ответ: f (x) = (x - 1)3(x + 1)2(х + 2)

Задача 6.

При помощи кратных корней, найти точку (точки) х, в которых график функции f(x)= х6 - 4х5 - 2х4 + 16х3 + 5х2 - 20х - 12 касается оси ОХ, но не пересекает ее.

Решение: f(x)= х6 - 4х5 - 2х4 + 16х3 + 5х2 - 20х - 12.

Найдем производную многочлена: f /(x)= 6х5 - 20х4 - 8х3 + 48х2 + 10х - 20.

НОД (f (x), f /(x)) = х3 - 3х - 2.

Найдем вторую производную, т.к. линейные множители пока выделить мы не можем: f //(x)) = 30х4 - 80х3 - 24х2 + 96х + 10.

НОД (f /(x), f //(x)) = х + 1. Таким образом: f //(x)) = (х +1)q1(x), следовательно: f /(x) = (х +1)2q2(x), разделив f /(x) на (х +1)2, получим f /(x) = (х +1)2(x - 2).

Следовательно, f (x) = (х +1)3(x - 2)2q3(x). Разделив f (x) на (х +1)3(x - 2)2 получим f (x) = (х +1)3(x - 2)2(x - 3).

Таким образом, имеем х = -1 - трехкратный корень многочлена, х = 2 - двукратный корень, х = 3 - простой корень. Следовательно, в точке х = 1 график имеет точку перегиба (нечетная кратность), в точке х = 2 график касается оси ОХ, но не пересекает ее (четная кратность), в точке х = 3 график пересекает ось ОХ (простой корень).

Ответ: х = 2.

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Если мы знаем, что 1 - i является двукратным корнем многочлена f(x), то это означает, что (x - (1 - i))^2 является множителем этого многочлена. Раскроем квадрат:

(x - (1 - i))^2 = (x - 1 + i)(x - 1 + i)

Теперь нам нужно найти другие корни многочлена f(x). Для этого давайте поделим f(x) на выражение (x - 1 + i)(x - 1 + i). Используем синтетическое деление.

Сначала найдем частное:

f(x) / [(x - 1 + i)(x - 1 + i)]

Теперь применяем синтетическое деление:

css
1 - i | 1 0 -8 24 -28 16 --------------------------------- | 1 -1+i _______________________________________ 1 -1+i | 1 -1+i _______________________________________ 0

Синтетическое деление завершено без остатка. Это означает, что (x - 1 + i) - это множитель многочлена f(x) дважды, и мы можем записать многочлен f(x) следующим образом:

f(x) = (x - 1 + i)^2

Теперь мы можем найти корни многочлена f(x) равные нулю:

(x - 1 + i)^2 = 0

x - 1 + i = 0

x = 1 - i

Таким образом, корни многочлена f(x) равны:

1 - i (дважды)

Это все корни многочлена f(x).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос