
30 баллов Знайти найбільше значення функції на відрізку [0;3], якщо f(x)= -2x³+6x²+9


Ответы на вопрос

Ответ:
Пошаговое объяснение:
Знайти найбільше значення функції на відрізку [0;3], якщо f(x)= -2x³+6x²+9
f'(x)=-6x²+12x=6x(2-x)
x=2
f(0)=9 минимум
f(2)=-16+24+9=17 максимум
f(3)=-54+54+9=9 минимум



Для знаходження найбільшого значення функції f(x) на відрізку [0;3], спершу знайдемо похідну цієї функції і знайдемо її критичні точки. Потім ми визначимо значення функції в цих точках та на кінцях відрізка [0;3], і виберемо найбільше значення.
Спершу знайдемо похідну функції f(x):
f(x) = -2x³ + 6x² + 9
f'(x) = -6x² + 12x
Тепер знайдемо критичні точки, розв'язавши рівняння f'(x) = 0:
-6x² + 12x = 0
Знайдемо спільний множник:
-6x(x - 2) = 0
З цього рівняння маємо дві можливі критичні точки: x = 0 і x = 2.
Тепер обчислимо значення функції f(x) на кінцях відрізка [0;3] і в обраних критичних точках:
- f(0) = -2(0)³ + 6(0)² + 9 = 9
- f(2) = -2(2)³ + 6(2)² + 9 = -16 + 24 + 9 = 17
- f(3) = -2(3)³ + 6(3)² + 9 = -54 + 54 + 9 = 9
Найбільше значення функції на відрізку [0;3] - це f(2) = 17.
Отже, найбільше значення функції f(x) на відрізку [0;3] дорівнює 17 баллів.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili