Вопрос задан 18.08.2023 в 18:47. Предмет Математика. Спрашивает Александров Ярослав.

В прямом треугольнике ABC C-прямой AB=12 и CD=DB. Найти медиану CD

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Холина Ксения.
В прямоугольном треугольнике медиана, проведенная из прямого угла к гипотенузе равна половине гипотенузе.
Значит CD= 1/2 AB=1/2×12=6Ответ: 6.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Медиана треугольника — это линия, соединяющая вершину треугольника с серединой противоположной стороны. В данном случае, медиана CD будет соединять вершину C с серединой стороны AB.

Поскольку треугольник ABC прямоугольный и дано, что C - прямой угол, то мы можем использовать теорему Пифагора:

AB^2 = AC^2 + BC^2

где AB = 12 - это гипотенуза, AC - катет, и BC - второй катет. Мы хотим найти длину медианы CD, которая будет равна половине длины стороны AB:

CD = AB / 2

Теперь мы можем использовать данную информацию для решения задачи.

Сначала найдем длину катета BC, используя теорему Пифагора:

BC^2 = AB^2 - AC^2 BC^2 = 12^2 - AC^2 BC^2 = 144 - AC^2

Так как CD = DB, а BC - это половина стороны CD, то:

BC = CD / 2

Подставим выражение для BC в уравнение:

BC^2 = (CD / 2)^2 144 - AC^2 = (CD / 2)^2

Теперь выразим длину медианы CD:

CD^2 = 2 * (144 - AC^2) CD = √(2 * (144 - AC^2))

Для того чтобы продолжить вычисления, нам нужно знать длину катета AC. Без этой информации мы не сможем окончательно определить длину медианы CD.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос