
4х+3у-2z=4 3х+6у+3z=24 3x+2y+z=10


Ответы на вопрос





It seems like you've provided a system of three linear equations with three variables: x, y, and z. To solve this system of equations, you can use methods like substitution, elimination, or matrix operations. I'll demonstrate how to solve it using the substitution method:
Given system of equations:
- 4x + 3y - 2z = 4
- 3x + 6y + 3z = 24
- 3x + 2y + z = 10
Let's start by solving equation (3) for one variable and then substitute it into the other two equations:
From equation (3), we have: z = 10 - 3x - 2y
Substitute this value of z into equations (1) and (2):
Equation (1): 4x + 3y - 2(10 - 3x - 2y) = 4 4x + 3y - 20 + 6x + 4y = 4 10x + 7y = 24 Divide by 10: x + (7/10)y = 2.4 --> Equation (4)
Equation (2): 3x + 6y + 3(10 - 3x - 2y) = 24 3x + 6y + 30 - 9x - 6y = 24 -6x = -6 Divide by -6: x = 1 --> Equation (5)
Now that we have the value of x, we can substitute it back into equation (4):
1 + (7/10)y = 2.4 (7/10)y = 1.4 y = 2
Finally, substitute the values of x and y back into the equation for z that we derived earlier:
z = 10 - 3(1) - 2(2) z = 10 - 3 - 4 z = 3
So, the solution to the system of equations is x = 1, y = 2, and z = 3. You can verify this solution by substituting these values into all three original equations.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili