
4-sin^2x=0 4sin3x*cos3x=2


Ответы на вопрос

sin²x = 4 - не имеет решений, т.к. -1 ≤ sinx ≤ 1
2) 4sin3xcos3x = 2
2sin6x = 2
sin6x = 1
6x = πk
x = πk/6, k∈Z



To solve the equations, let's work through each of them step-by-step:
- 4 - sin^2(x) = 0
We can start by rearranging the equation to isolate sin^2(x):
sin^2(x) = 4
Next, take the square root of both sides to find the value of sin(x):
sin(x) = ±√4 = ±2
However, the sine function only takes values between -1 and 1, so the ±2 is not valid. Therefore, there are no solutions for this equation.
- 4sin(3x)cos(3x) = 2
Divide both sides by 2:
2sin(3x)cos(3x) = 1
Use the double angle formula for sine:
sin(2θ) = 2sin(θ)cos(θ)
The equation becomes:
sin(6x) = 1
Now, we know that sin(π/2) = 1. So, the equation is true if:
6x = π/2 + 2πk, where k is an integer.
Now, we can solve for x:
x = (π/2 + 2πk) / 6, where k is an integer.
These are the solutions for the second equation. Remember that there are infinitely many solutions, as the sine function has periodic behavior. So, there will be multiple values of x that satisfy the equation.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili