
Интеграл cosx/2*cosx/3dx


Ответы на вопрос





To find the integral of cos(x/2) * cos(x/3) with respect to x, we can use the trigonometric identity:
cos(A) * cos(B) = (1/2) * [cos(A + B) + cos(A - B)]
In our case, A = x/2 and B = x/3, so we can rewrite the integral as follows:
∫(cos(x/2) * cos(x/3)) dx = ∫((1/2) * [cos(x/2 + x/3) + cos(x/2 - x/3])) dx
Now, let's integrate each term separately:
∫cos(x/2 + x/3) dx:
To integrate cos(x/2 + x/3), we can use the substitution method. Let u = x/2 + x/3, then du = (1/2 + 1/3) dx = (5/6) dx.
∫cos(x/2 + x/3) dx = ∫cos(u) * (6/5) du = (6/5) * ∫cos(u) du
The integral of cos(u) with respect to u is sin(u). So, the above becomes:
(6/5) * sin(u) = (6/5) * sin(x/2 + x/3)
∫cos(x/2 - x/3) dx:
To integrate cos(x/2 - x/3), we can use the substitution method again. Let v = x/2 - x/3, then dv = (1/2 - 1/3) dx = (1/6) dx.
∫cos(x/2 - x/3) dx = ∫cos(v) * (6/1) dv = 6 * ∫cos(v) dv
The integral of cos(v) with respect to v is sin(v). So, the above becomes:
6 * sin(v) = 6 * sin(x/2 - x/3)
Now, putting it all together:
∫(cos(x/2) * cos(x/3)) dx = (1/2) * [cos(x/2 + x/3) + cos(x/2 - x/3)] dx = (1/2) * [(6/5) * sin(x/2 + x/3) + 6 * sin(x/2 - x/3)]
So, the integral of cos(x/2) * cos(x/3) with respect to x is:
(1/2) * [(6/5) * sin(x/2 + x/3) + 6 * sin(x/2 - x/3)] + C
where C is the constant of integration.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili