Вопрос задан 31.07.2023 в 19:26. Предмет Математика. Спрашивает Елкина Виктория.

Y = 2 - cosX описать свойства графика

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иночкина Снежана.
Область определения: x ∈ R
Минимум:  (2 \pi n, 1) , n ∈ Z
Максимум:  ( \pi +2 \pi n, 3), n ∈ Z
Пересечение с осью y: (0,1)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To describe the properties of the graph of the function Y=2cos(X)Y = 2 - \cos(X), we need to analyze its key features. Let's take a look at some of its characteristics:

  1. Periodicity: The graph of Y=cos(X)Y = \cos(X) has a period of 2π2\pi, which means it repeats itself every 2π2\pi units horizontally. However, when we subtract cos(X)\cos(X) from 2, this affects the graph vertically, but it does not change the periodicity.

  2. Amplitude and Range: The cosine function oscillates between -1 and 1. When we subtract cos(X)\cos(X) from 2, the new function's amplitude is 2(1)=32 - (-1) = 3, and its range becomes [21,2+1]=[1,3][2 - 1, 2 + 1] = [1, 3]. So, the graph of Y=2cos(X)Y = 2 - \cos(X) will oscillate between 1 and 3.

  3. Vertical Shift: The constant term 22 in the equation causes a vertical shift upward by 2 units. This means that the graph of Y=2cos(X)Y = 2 - \cos(X) will be shifted 2 units up compared to the graph of Y=cos(X)Y = \cos(X).

  4. Symmetry: The cosine function is an even function, meaning cos(X)=cos(X)\cos(-X) = \cos(X). When we subtract it from 2, the resulting function, Y=2cos(X)Y = 2 - \cos(X), remains even. This implies that the graph is symmetric about the y-axis.

  5. Intercepts: To find the y-intercept, let X=0X = 0 in the equation: Y=2cos(0)=21=1Y = 2 - \cos(0) = 2 - 1 = 1. So, the graph passes through the point (0, 1). There are no x-intercepts since cos(X)\cos(X) never equals 2.

  6. Extrema: The cosine function oscillates between -1 and 1, which means the function 2cos(X)2 - \cos(X) will have a maximum value of 2(1)=32 - (-1) = 3 and a minimum value of 21=12 - 1 = 1.

  7. Asymptotes: The function Y=2cos(X)Y = 2 - \cos(X) does not have any asymptotes, as it is a continuous function.

  8. Periodic Behavior: Since the function Y=2cos(X)Y = 2 - \cos(X) contains cos(X)\cos(X), it will exhibit the same periodic behavior as the cosine function. It will have repeated peaks and valleys every 2π2\pi units.

  9. Graph Shape: Combining all the above properties, the graph of Y=2cos(X)Y = 2 - \cos(X) will be a continuous, smooth, and periodic function that oscillates between 1 and 3, with the central axis of symmetry at Y=2Y = 2. It will resemble the graph of Y=cos(X)Y = \cos(X) shifted up by 2 units and vertically stretched by a factor of 3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос