
1). Log1/5(4-3x)>или=2 2). Log2x*log4x*log8x*log16x=1/3log0,5x


Ответы на вопрос





Let's solve the inequalities step by step:
- Solve for the inequality log1/5(4-3x) >= 2:
To begin, remember that log_a(b) = c is equivalent to a^c = b. In this case, we have log1/5(4-3x) >= 2, so it can be rewritten as:
1/5^(4-3x) >= 2
Next, eliminate the base by converting 2 to its corresponding logarithmic form with base 1/5:
1/5^(4-3x) >= 1/5^2
Now, since the bases are the same (both 1/5), we can compare the exponents:
4 - 3x >= 2
Now, solve for x:
-3x >= 2 - 4 -3x >= -2
Divide both sides by -3 (since we are dividing by a negative number, the inequality flips):
x <= 2/3
So the solution for the inequality is x <= 2/3.
- Solve for the equation log2x * log4x * log8x * log16x = (1/3) * log0.5x:
First, notice that log0.5x is equal to log2(0.5x), as log with base 2 is the common logarithm used in most mathematical notations.
Now, rewrite the equation:
log2x * log4x * log8x * log16x = (1/3) * log2(0.5x)
Using the logarithmic property that log_a(b) + log_a(c) = log_a(b * c), we can simplify the left side:
log2x * log4x * log8x * log16x = log2(2x) * log2(2^2) * log2(2^3) * log2(2^4)
Using the fact that log_a(a^n) = n, the equation becomes:
log2x * log4x * log8x * log16x = log2(2x) * 2 * 3 * 4
Now, simplify the right side:
log2x * log4x * log8x * log16x = 24 * log2(2x)
Now, the equation becomes:
24 * log2(2x) = (1/3) * log2(0.5x)
Next, isolate the logarithm term on one side:
log2(2x) = (1/3) * log2(0.5x) / 24
Using the logarithmic property log_a(b^c) = c * log_a(b):
log2(2x) = log2((0.5x)^(1/3)) / 24
Now, since log_a(a) = 1 for any base a, we have:
2x = (0.5x)^(1/3) / 24
Raise both sides to the power of 3 to eliminate the cube root:
(2x)^3 = ((0.5x)^(1/3) / 24)^3
Simplify:
8x^3 = (0.5x) / (24^3)
Now, solve for x:
8x^3 = (0.5x) / 13824
Multiply both sides by 13824 to eliminate the denominator:
110592x^3 = 0.5x
Now, bring all terms to one side of the equation:
110592x^3 - 0.5x = 0
At this point, it's challenging to find the exact solutions for x. You may need to use numerical methods or calculators to approximate the values. However, it is evident that x = 0 is one of the solutions. To find the other solutions, you might use methods like the Newton-Raphson method or graphical methods.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili