
2 (х+3у)+9=х+6 и 3 (х-2у)=х+30 это система решите способом сложения


Ответы на вопрос




To solve the system of equations using the method of addition (also known as the method of elimination or the method of balancing), we'll add the two equations together in such a way that one of the variables gets eliminated, leaving us with a single equation that we can solve for the remaining variable.
The given system of equations is:
- 2(x + 3y) + 9 = x + 6
- 3(x - 2y) = x + 30
Step 1: Simplify the equations: For equation 1, distribute the 2 on the left side: 2x + 6y + 9 = x + 6
For equation 2, distribute the 3 on the left side: 3x - 6y = x + 30
Step 2: Rearrange both equations so that the variables are on one side and constants on the other side:
Equation 1: 2x + 6y - x = 6 - 9 x + 6y = -3
Equation 2: 3x - x - 6y = 30 2x - 6y = 30
Step 3: Now, we need to eliminate one of the variables by adding the two equations:
(x + 6y) + (2x - 6y) = -3 + 30
Combine like terms: 3x = 27
Step 4: Solve for x: x = 27 / 3 x = 9
Step 5: Substitute the value of x (which is 9) into one of the original equations to find y. Let's use Equation 1:
x + 6y = -3 9 + 6y = -3
Step 6: Solve for y: 6y = -3 - 9 6y = -12
y = -12 / 6 y = -2
So, the solution to the system of equations is x = 9 and y = -2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili