
При каких значениях параметра а уравнение ax^2 + (2a+1)x + 1 + a =0. Имеет 2 корня разных знаков?


Ответы на вопрос

Квадратное уравнение имеет два действительные корни, если его дискриминант больше нуля и коэффициент при х² не равен нулю, т.е.
То есть, для всех а, кроме a=0 квадратное уравнение имеет два действительных корня
Нам нужно найти такой параметр а, чтобы корни квадратного уравнения были разных знаков, то есть один положительный и один отрицательный
По теореме Виета:
_____+___(-1)___-___(0)____+____
то есть, при a ∈ (-1;0) квадратное уравнение имеет два корня разных знаков
Ответ:



Для уравнения вида с параметром необходимо, чтобы дискриминант этого квадратного уравнения был положительным числом. Дискриминант вычисляется по формуле:
Условие для двух корней разных знаков: .
Подставим эту формулу для и решим неравенство:
Раскроем скобки:
Упростим:
Так как это неравенство верно для всех значений , нет каких-либо ограничений на . То есть, для любого значения параметра уравнение будет иметь два корня с разными знаками.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili