Вопрос задан 29.07.2023 в 03:55. Предмет Математика. Спрашивает Мукомел София.

Помогите решить 3log^2 основание2(sin πx/3)+log основание2(1-cos 2πx/3)=2 При € Х [1;6]

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Зимина Алина.

3log₂²(sin(пx/3))+log₂(1-cos(2пx/3))=2


ОДЗ:

{sin(пx/3)>0 <=> 6k<x<6k+3

{1-cos(2пx/3)>0 <=> x≠3k, тогда

общее ОДЗ: 6k<x<6k+3


Так как 1-cos(2x)=2sin²x, то перепишем уравнение:

3log₂²(sin(пx/3))+log₂(2sin²(пx/3))=2


Замена: t=sin(пx/3)

3log₂²t+log₂(2t²)=2

3log₂²t+log₂2+log₂(t²)=2

3log₂²t+2log₂t-1=0


Замена: z=log₂t

3z²+2z-1=0

(z+1)(3z-1)=0

z=-1 и z=1/3


log₂t=-1 => t=1/2

log₂t=1/3 => t=∛2


sin(пx/3)=1/2

x=1/2+6k, k∈Z (1)

x=5/2+6k, k∈Z (2)


sin(пx/3)=∛2>1, решений нет


Тогда по условию 1≤x≤6, подбираем такие k, при которых условие будет выполняться. Тогда подставляя в (1) и (2) получаем, что на данном промежутке будет один корень - x=5/2.


Ответ: x=5/2.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данного уравнения, мы должны сначала привести его к более простому виду и затем найти значения x, удовлетворяющие уравнению.

Давайте начнем:

  1. Представим log^2 основание 2(sin πx/3) как u: u = log^2_2(sin πx/3).

  2. Теперь заменим log^2 основание 2(sin πx/3) в уравнении на u: 3u + log_2(1 - cos 2πx/3) = 2.

  3. Теперь решим уравнение относительно u: 3u = 2 - log_2(1 - cos 2πx/3).

  4. Перенесем все на одну сторону: 3u + log_2(1 - cos 2πx/3) - 2 = 0.

Теперь у нас есть уравнение вида 3u + log_2(1 - cos 2πx/3) - 2 = 0, где u = log^2_2(sin πx/3).

Теперь давайте решим это уравнение численно. На данном этапе точное аналитическое решение найти сложно, поэтому воспользуемся численным методом. Для этого воспользуемся программой или калькулятором, способными решить уравнения численно.

После решения уравнения мы получим численные значения u. Затем мы сможем найти значения x, используя следующее соотношение:

u = log^2_2(sin πx/3).

Для каждого значения u найдем соответствующее значение x.

Обратите внимание, что интервал [1, 6] для x означает, что x должен находиться между 1 и 6 включительно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос