
Решить систему уравнений 9x-6y-4z=5 15x-7y+5z=-10 10x+5y-7z=30


Ответы на вопрос





To solve the system of equations:
- 9x - 6y - 4z = 5
- 15x - 7y + 5z = -10
- 10x + 5y - 7z = 30
We can use the method of elimination or substitution to find the values of x, y, and z that satisfy all three equations.
Method 1: Elimination Step 1: Multiply the equations to create a common coefficient to eliminate a variable. Step 2: Add or subtract the equations to eliminate the variable. Step 3: Solve for the remaining variables.
Step 1: Let's multiply the equations to eliminate the variable "y." Multiply Equation 1 by 7 and Equation 2 by 6:
Equation 1: 63x - 42y - 28z = 35 Equation 2: 90x - 42y + 30z = -60
Step 2: Subtract Equation 1 from Equation 2 to eliminate "y":
(90x - 42y + 30z) - (63x - 42y - 28z) = -60 - 35
Simplify the equation:
90x - 42y + 30z - 63x + 42y + 28z = -95
27x + 58z = -95 (Equation 4 after elimination)
Step 3: Now let's eliminate "y" again by multiplying Equation 1 by 5 and Equation 3 by 6:
Equation 1: 45x - 30y - 20z = 25 Equation 3: 60x + 30y - 42z = 180
Add Equation 1 and Equation 3 to eliminate "y":
(45x - 30y - 20z) + (60x + 30y - 42z) = 25 + 180
Simplify the equation:
105x - 62z = 205 (Equation 5 after elimination)
Now we have a system of two equations with two variables:
- 27x + 58z = -95 (Equation 4)
- 105x - 62z = 205 (Equation 5)
Method 2: Substitution Step 1: Solve one equation for one variable and substitute it into the other equations. Step 2: Solve the resulting system of two equations with two variables.
Let's solve Equation 3 for "y":
10x + 5y - 7z = 30 5y = -10x - 30 + 7z y = (-2x - 6) + (7/5)z
Now substitute the expression for "y" into the first two equations:
- 9x - 6((-2x - 6) + (7/5)z) - 4z = 5
- 15x - 7((-2x - 6) + (7/5)z) + 5z = -10
Now simplify these equations:
9x + 12x + 36 - 6(7/5)z - 4z = 5
15x + 14x + 42 - 7(7/5)z + 5z = -10
(21x - (34/5)z = -31 (Equation 6)
(29x - (24/5)z = -52 (Equation 7)
Now we have a system of two equations with two variables:
- 21x - (34/5)z = -31 (Equation 6)
- 29x - (24/5)z = -52 (Equation 7)
Both methods yield the same system of equations:
- 27x + 58z = -95 (Equation 4)
- 105x - 62z = 205 (Equation 5)
Now, let's solve this system. One way to do it is to solve Equation 4 for x and then substitute the value of x into Equation 5:
Equation 4: 27x + 58z = -95 27x = -58z - 95 x = (-58z - 95)/27
Now substitute the value of x into Equation 5:
105((-58z - 95)/27) - 62z = 205
Now, solve for z:
105(-58z - 95) - 62z * 27 = 205 * 27 -6090z - 10075 - 1674z = 5535 -7764z = 15610 z = -15610 / 7764 z ≈ -2.0102
Now, substitute the value of z back into the expression for x:
x = (-58z - 95)/27 x = (-58(-2.0102) - 95)/27 x ≈ 3.9969
Finally, find the value of y using any of the original equations:
10x + 5y - 7z = 30 10(3.9969) + 5y - 7(-2.0102) = 30 39.969 + 5y + 14.0714 = 30 5y = 30 - 39.969 - 14.0714 5y = -23.0404 y = -23.0404 / 5 y ≈ -4.6081
So, the solution to the system of equations is approximately: x ≈ 3.9969 y ≈ -4.6081 z ≈ -2.0102


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili