
Вопрос задан 28.07.2023 в 20:00.
Предмет Математика.
Спрашивает Шайдуллина Камиля.
Наименьшее общее кратное чисел а и b равно ab/3. Найдите их наибольший общий делитель.


Ответы на вопрос

Отвечает Лаптева Александра.
НОК(a, b)*НОД(a, b)=ab
Так как НОК(a, b)=ab/3, то ab/3*НОД(a, b)=ab, откуда НОД(a, b)=3



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для нахождения наибольшего общего делителя (НОД) чисел a и b, используем свойство: НОД(a, b) * НОК(a, b) = |a * b|, где НОК - наименьшее общее кратное.
У нас дано, что НОК(a, b) = ab/3. Теперь мы можем использовать это знание для нахождения НОД(a, b):
Находим НОК(a, b): НОК(a, b) = ab/3
Используем свойство: НОД(a, b) * НОК(a, b) = |a * b|: НОД(a, b) * (ab/3) = |a * b|
Делим обе стороны на |a * b|: НОД(a, b) = |a * b| / (ab/3)
Заметим, что |a * b| / (ab/3) = 3
Таким образом, наибольший общий делитель чисел a и b равен 3.


Похожие вопросы

Математика 10
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili