
1) |x + 3| = -42) |x| + 1 = 73)|x| - 2 = -3


Ответы на вопрос

2) |х|+1=7
|х|=7-1
|х|=6
Окончательный ответ:х1=-6;х2=6
3) |х|-2=-3
|х|=-3+2
|х|=-1(это ложное утверждение)



Let's solve each of these absolute value equations step by step:
- |x + 3| = -4
Since the absolute value of any real number is always non-negative, it can never be negative, there is no solution for this equation. The absolute value of any expression is always greater than or equal to zero.
- |x| + 1 = 7
Subtract 1 from both sides:
|x| = 7 - 1 |x| = 6
Now, we have two cases for the absolute value:
Case 1: x is positive or zero: If x is positive or zero, then |x| = x, so we can write: x = 6
Case 2: x is negative: If x is negative, then |x| = -x, so we can write: -x = 6
Multiply both sides by -1 (to isolate x): x = -6
So, the solutions to the equation are x = 6 and x = -6.
- |x| - 2 = -3
Add 2 to both sides:
|x| = -3 + 2 |x| = -1
Again, the absolute value of any expression is always non-negative, so it can never be negative. Thus, there is no solution for this equation.
In summary:
- No solution
- x = 6 and x = -6
- No solution


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili