
1 + 3 + 5 + ... + 99 =?


Ответы на вопрос




To find the sum of an arithmetic series like the one you've presented (1 + 3 + 5 + ... + 99), you can use the formula for the sum of the first n terms of an arithmetic series:
Sum = (n/2) * (first term + last term)
In this case, the first term is 1, the last term is 99, and the common difference between each term is 2 (3 - 1 = 2, 5 - 3 = 2, and so on).
We can calculate the number of terms (n) using the formula for the nth term of an arithmetic series:
nth term = first term + (n - 1) * common difference
Since we want to find the last term, which is 99, we can set up the equation:
99 = 1 + (n - 1) * 2
Now, solve for n:
98 = 2 * (n - 1) n - 1 = 98 / 2 n - 1 = 49 n = 50
Now that we know there are 50 terms, we can calculate the sum:
Sum = (n/2) * (first term + last term) Sum = (50/2) * (1 + 99) Sum = 25 * 100 Sum = 2500
So, the sum of the series 1 + 3 + 5 + ... + 99 is 2500.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili