
F(x)= x^(4) -8x^(3)-10 найти


Ответы на вопрос

Решение дано на фото.




To find the critical points of the function , we need to find the values of where the derivative of the function is equal to zero.
Find the derivative of :
Set equal to zero and solve for :
Now, we have two possibilities for critical points:
a) gives . b) gives .
- Now, we need to check if these points are indeed critical points. To do that, we find the second derivative and evaluate it at each critical point.
For :
For :
- Analyze the results:
a) For , since , the second derivative test is inconclusive. We need to perform further analysis.
b) For , since (which is positive), the second derivative test tells us that the function has a local minimum at .
- Determine the type of critical point:
a) For , we can't determine whether it's a maximum, minimum, or an inflection point based on the second derivative test. We may use other methods like the first derivative test or further analysis to determine its nature.
b) For , we know it's a local minimum.
So, the critical points of the function are:
- (undetermined nature)
- (local minimum)


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili