Вопрос задан 26.07.2023 в 15:07. Предмет Математика. Спрашивает Максимова Ирина.

1/x+5+1/x-7+1/x+7>0 помогите пожалуйста отдам 15 балл

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Нутфуллина Амира.

1/x+5+1/x-7+1/x+7>0  3/х+5>0    3/х>-5   -5х<3  x<-3/5

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы найти интервалы, в которых неравенство выполняется, нужно решить его.

Дано неравенство:

1/(x+5) + 1/(x-7) + 1/(x+7) > 0

Для начала, найдем общий знаменатель для всех дробей, это будет (x+5)(x-7)(x+7):

((x-7)(x+7) + (x+5)(x+7) + (x+5)(x-7)) / ((x+5)(x-7)(x+7)) > 0

Теперь раскроем скобки и упростим:

((x^2 - 49) + (x^2 + 12x + 35) + (x^2 - 12x - 35)) / ((x+5)(x-7)(x+7)) > 0

(x^2 + x^2 + x^2 - 49 + 35 - 35 + 12x - 12x) / ((x+5)(x-7)(x+7)) > 0

(3x^2 - 49) / ((x+5)(x-7)(x+7)) > 0

Теперь найдем точки разрыва функции, которые могут делить число на ноль:

  1. x+5 = 0 => x = -5
  2. x-7 = 0 => x = 7
  3. x+7 = 0 => x = -7

Теперь построим таблицу знаков для выражения (3x^2 - 49) и определим интервалы, на которых оно больше нуля (т.е. интервалы, когда всё выражение больше нуля):

markdown
x | -∞ | -7 | -5 | 7 | +∞ ---------------------------------------------- 3x^2-49 | - | - | + | + | +

Таким образом, неравенство выполняется на интервалах: (-∞, -7), (-5, 7) и (7, +∞).

Ответ: решением неравенства являются интервалы (-∞, -7), (-5, 7) и (7, +∞).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос