
1/3+1/6+1/11+1/20+1/37... формула


Ответы на вопрос




The given sequence seems to be a series of fractions with varying denominators. To find a formula for the nth term of this series, we need to identify the pattern.
Let's list the first few terms of the series to observe the pattern:
1/3, 1/6, 1/11, 1/20, 1/37, ...
If we look at the denominators, we can see that they are following the pattern of consecutive odd numbers:
3, 5 (=3+2), 7 (=5+2), 9 (=7+2), 11 (=9+2), ...
The nth term of the series can be written as 1/(a_n), where a_n represents the nth term of the sequence of odd numbers.
So, the formula for the nth term of the series is:
a_n = 2n + 1
Now, we have the formula for the nth term of the sequence of odd numbers, and we can express the nth term of the original series as:
1/(2n + 1)
Thus, the formula for the nth term of the series is 1/(2n + 1).


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili