
Вопрос задан 25.07.2023 в 16:31.
Предмет Математика.
Спрашивает Самохвалов Женя.
Нужна помощь log 3 (x 2-9) < 3


Ответы на вопрос

Отвечает Стунтерский Коля.
D:
Ответ



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы решить неравенство log₃(x² - 9) < 3, давайте выполним следующие шаги:
Выразим логарифм в эквивалентной показательной форме. Для этого используем определение логарифма: logₐ(b) = c эквивалентно a^c = b.
Получим выражение без логарифма.
Решим неравенство.
Шаг 1: log₃(x² - 9) < 3 Теперь перепишем в эквивалентной показательной форме: 3^3 > x² - 9
Шаг 2: Упростим правую часть: 27 > x² - 9
Шаг 3: Теперь добавим 9 к обеим сторонам неравенства: 27 + 9 > x²
36 > x²
Далее, избавимся от квадратного корня, заметив, что 36 - это 6²: x² < 6²
x² < 36
Теперь возьмем квадратный корень от обеих сторон, но помним, что нужно учесть и отрицательные значения: -6 < x < 6
Таким образом, решением данного неравенства является интервал (-6, 6).


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili