
4^n+2^2n+2+4^n+2 делится на 21?СРОЧНО!!


Ответы на вопрос

делится на 21



To check if the expression is divisible by 21 for any integer value of , we can rewrite the expression as follows:
Now, let's focus on the expression inside the parentheses: .
Factor out from each term:
Now, we have the original expression written as:
To check if it's divisible by 21, we need to check if it's divisible by both 3 and 7 because 21 is the product of 3 and 7.
- Divisibility by 3: For any integer , the expression contains two terms: and . Since is always divisible by 2, we only need to check if is divisible by 3.
Now, observe that when is odd, is congruent to 1 modulo 3 (i.e., ). When is even, is congruent to 1 modulo 3 as well (i.e., ).
Thus, is always divisible by 3 because it's the sum of three integers, all of which are congruent to 1 modulo 3.
- Divisibility by 7: Now, let's consider modulo 7:
When : , which is divisible by 7.
When : , which is divisible by 7.
You can continue checking for different values of , and you'll find that for any integer , is divisible by 7.
Since the expression is divisible by both 3 and 7, it is also divisible by their product, which is 21.
In conclusion, the expression is divisible by 21 for any integer value of .


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili