Вопрос задан 30.04.2019 в 06:03. Предмет Математика. Спрашивает Юшко Денис.

Используйте таблицу используя таблицу 18 данные числа припишите справа и слева цифры так чтобы

получилось число которое делится на 2 ,5,9 данное число 6 делится на 2 делится на 5 делится на 9 данное число 97 делится на 2 делится на 5 делится на данное число 659 делится на 2 делится на 5 делится на 9 данное число 2008 делится на 2 делится на 5 делится на 9
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тапова Тереза.

2, 8, 16, 24, 66, 150 — делятся на 2, так как последняя цифра этих чисел четная;

3, 7, 19, 35, 77, 453 — не делятся на 2, так как последняя цифра этих чисел нечетная.

Признак делимости на 3

Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Например:

75 — делится на 3, так как 7+5=12, и число 12 делится на 3 (12:3=4);

471 — делится на 3, так как 4+7+1=12, и число 12 делится на 3 (12:3=4);

532 — не делится на 3, так как 5+3+2=10, а число 10 не делится на 3 (10:3=313).

Признак делимости на 4

Число делится на 4 тогда и только тогда, когда две его последние цифры составляют число, которое делится на 4. Двузначное число делится на 4 тогда и только тогда, когда удвоенное число десятков, сложенное с числом единиц делится на 4.

Например:

4576 — делится на 4, так как число 76 делится на 4 (7·2+6=20, 20:4=5);

9634 — не делится на 4, так как число 34 не делится на 4 (3·2+4=10, 10:4=212).

Признак делимости на 5

Число делится на 5 тогда, когда последняя цифра делится на 5, т.е. если она 0 или 5.

Например:

375, 5680, 233575 — делятся на 5, так как их последняя цифра равна 0 или 5;

9634, 452, 389753 — не делятся на 5, так как их последняя цифра не равна 0 или 5.

Признак делимости на 6

Число делится на 6 тогда и только тогда, когда оно делится и на 2, и на 3, то есть если оно четное и сумма его цифр делится на 3.

Например:

462 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 4+6+2=12, 12:3=4);

3456 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 6 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 3+4+5+6=18, 18:3=6);

24642 — делятся на 6, по признаку делимости на 2 оно делится на 2 (последняя цифра 2 делится на 2), по признаку делимости на 3 оно делится на 3 (сумма цифр числа делится на 3: 2+4+6+4+2=18, 18:3=6);

861 — не делятся на 6, так как по признаку делимости оно не делится на 2;

3458 — не делятся на 6, так как по признаку делимости оно не делится на 3;

34681 — не делятся на 6, так как по признаку делимости оно не делится на 2.

Признак делимости на 9

Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Например:

468, 4788, 69759 — делятся на 9, так как сумма их цифр делится на девять (4+6+8=18, 4+7+8+8=27, 6+9+7+5+9=36);

861, 3458, 34681 — не делятся на 9, так как сумма их цифр не делится на девять (8+6+1=15, 3+4+5+8=20, 3+4+6+8+1=22).

Признак делимости на 10

Число делится на 10 тогда и только тогда, когда оно оканчивается на нoль.

Например:

460, 24000, 1245464570 — делятся на 10, так как последняя цифра этих чисел равна нулю;

234, 25048, 1230000003 — не делятся на 10, так как последняя цифра этих чисел не равна нулю.

Признак делимости на 11

Число делится на 11 если сумма цифр стоящих на четных местах равна сумме цифр стоящих на нечетных местах или отличается от нее на число кратное 11.

Например:

242 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 2 = 4; сумма цифр на четных позициях S2n = 4 и S2n+1 = S2n.

319 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 3 + 9 = 12; сумма цифр на четных позициях S2n = 1, а их разность S2n+1 - S2n = 11 - делится на 11.

919380 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 9 + 9  + 8 = 26; сумма цифр на четных позициях S2n = 1 + 3 + 0 = 4, а их разность S2n+1 - S2n = 22 - делится на 11.

2838 — делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 3 = 5; сумма цифр на четных позициях S2n = 8+ 8 = 16, а их разность S2n - S2n+1 = 11 - делится на 11.

244 — не делится на 11, так как сумма цифр на нечетных позициях S2n+1 = 2 + 4 = 6; сумма цифр на четных позициях S2n = 4 и S2n+1 - S2n = 2 - не делится на 11.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Таблица чисел, которые делятся на 2, 5 и 9

| Число | Делится на 2 | Делится на 5 | Делится на 9 | |-------|--------------|--------------|--------------| | 6 | Да | Да | Да | | 97 | Да | Да | Нет | | 659 | Да | Да | Да | | 2008 | Да | Да | Да |

Объяснение: - Число 6 делится на 2, 5 и 9, так как оно является четным числом и кратно 2, кратно 5 и кратно 9. - Число 97 делится на 2 и 5, но не делится на 9. - Число 659 делится на 2, 5 и 9, так как оно является нечетным числом, но кратно 2, кратно 5 и кратно 9. - Число 2008 делится на 2, 5 и 9, так как оно является четным числом и кратно 2, кратно 5 и кратно 9.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос