
Log 3x = log 3 (6 - x в квадрате)


Ответы на вопрос

log 3x = log 3 (6 - x в квадрате),х∈(0,√6)
х=6-х2
х-6+х2=0
х2+х-6=0
х=-1+-√1+24/2
х=-1+-5/2
х=-1-5/2
х=2
х=-3
х∈(0,√6)
х=2



To solve the equation log(3x) = log3(6 - x^2), we will use the properties of logarithms. The equation states that the logarithm of 3x to the base 10 is equal to the logarithm of (6 - x^2) to the base 3.
First, let's write the equation using logarithm properties:
log₃(3x) = log₃(6 - x²)
Since both sides have the same base (logarithm base 3), we can eliminate the logarithm and equate the expressions inside:
3x = 6 - x²
Now, we have a simple quadratic equation to solve. We can rearrange the equation to get it in the standard form:
x² + 3x - 6 = 0
Now, we can either factor this quadratic equation or use the quadratic formula to find the solutions for x. Let's use the quadratic formula:
For a quadratic equation of the form ax² + bx + c = 0, the solutions are given by:
x = (-b ± √(b² - 4ac)) / 2a
In our case, a = 1, b = 3, and c = -6:
x = (-(3) ± √(3² - 4(1)(-6))) / 2(1)
x = (-3 ± √(9 + 24)) / 2
x = (-3 ± √33) / 2
So, the two solutions for x are:
- x = (-3 + √33) / 2
- x = (-3 - √33) / 2
These are the exact solutions for the equation log(3x) = log3(6 - x^2). If you need the approximate decimal values, you can calculate them using a calculator.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili