
(log2x(4x^3))^2 -2=log2x(4x)


Ответы на вопрос

Ответ:
Пошаговое объяснение:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!





Ограничения для х:
4х больше 0 2х больше 0 2х не равно 1
х больше 0 х не равно 0,5
Введем замену log2x(4x)=t
Перенесем все в левую часть уравнения
t^2-t-2=0
t1=-1
t2=2
Обратная замена:
log2x(4x)=-1
4x=1/2x
х^2=1/8
х=корень из 2/4
х=-корень из 2/4
log2x(4x)=2
4х=4х^2
x=0
x=1



Let's solve the given equation step-by-step. I'll assume that the expression is as follows:
(log2(x)(4x^3))^2 - 2 = log2(x)(4x)
First, let's simplify the left side of the equation:
Step 1: Simplify the square of the logarithm (log2(x)(4x^3))^2 = (log2(x)(4x^3)) * (log2(x)(4x^3))
Step 2: Apply the property of logarithms: log_b(a^c) = c * log_b(a) (log2(x)(4x^3))^2 = 2 * log2(x)(4x^3)
Now our equation becomes:
2 * log2(x)(4x^3) - 2 = log2(x)(4x)
Next, we'll try to simplify the terms involving logarithms:
Step 3: Apply the property of logarithms: log_b(a * c) = log_b(a) + log_b(c) 2 * log2(x)(4x^3) = log2(x)(4) + log2(x)(x^3)
Step 4: Simplify further: 2 * log2(x)(4x^3) = 2 + 3 * log2(x)(x)
Now the equation becomes:
2 + 3 * log2(x)(x) - 2 = log2(x)(4x)
Step 5: Cancel out the common term "2" on both sides:
3 * log2(x)(x) = log2(x)(4x)
Step 6: Divide both sides by 3:
log2(x)(x) = (1/3) * log2(x)(4x)
Now, we need to remember the property of logarithms that states: log_b(a) = c is equivalent to b^c = a.
Step 7: Rewrite the equation using the property:
x = (4x)^(1/3)
Step 8: Solve for x:
Cube both sides to eliminate the cube root:
x^3 = 4x
Step 9: Rearrange the equation to set it to zero:
x^3 - 4x = 0
Step 10: Factor out the common term "x":
x(x^2 - 4) = 0
Now, we have two potential solutions:
- x = 0
- x^2 - 4 = 0
Step 11: Solve for the second solution:
x^2 - 4 = 0
x^2 = 4
x = ±√4
So, the second solution gives us two values: x = 2 and x = -2.
In conclusion, the three solutions to the equation are x = 0, x = 2, and x = -2. Please note that when using logarithms, we need to check that the values of x found are valid within the domain of the original equation. In this case, since we have a logarithm with base 2, x must be greater than 0. Therefore, x = 0 is not a valid solution for the original equation. The valid solutions are x = 2 and x = -2.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili