
Вопрос задан 01.04.2018 в 04:57.
Предмет Математика.
Спрашивает Лытнев Захар.
Log2x+log2(x+3)=2 Пожалуйста.


Ответы на вопрос

Отвечает Зима Дмитрий.
log(2,(x))+log(2,(x-3))=2.
Заменим 2 = log(2,(4)) и сумму логарифмов на логаримф произведения log(2,(x))+log(2,(x-3)) = log(2,(x(x-3))).
При равных основаниях равны и логарифмируемые выражения:
х(х-3) = 4.
Раскроем скобки и получим квадратное уравнение:
х² - 3х - 4 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-3)^2-4*1*(-4)=9-4*(-4)=9-(-4*4)=9-(-16)=9+16=25;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√25-(-3))/(2*1)=(5-(-3))/2=(5+3)/2=8/2=4;
x_2=(-√25-(-3))/(2*1)=(-5-(-3))/2=(-5+3)/2=-2/2=-1 не принимается по свойствам логарифмов.
Ответ: х = 4.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili