
Sin2x*cosx+sinx*cos2x=корень из 2/2


Ответы на вопрос




To verify the given trigonometric expression, we'll use some trigonometric identities. First, let's recall the double angle identities:
- Sin(2x) = 2 * Sin(x) * Cos(x)
- Cos(2x) = Cos^2(x) - Sin^2(x) = 2 * Cos^2(x) - 1 = 1 - 2 * Sin^2(x)
Now, we'll simplify the expression step by step:
Sin(2x) * Cos(x) + Sin(x) * Cos(2x)
Using the double angle identity for Sin(2x), we get:
(2 * Sin(x) * Cos(x)) * Cos(x) + Sin(x) * Cos(2x)
Next, using the double angle identity for Cos(2x), we get:
(2 * Sin(x) * Cos(x)) * Cos(x) + Sin(x) * (1 - 2 * Sin^2(x))
Now, distribute the terms:
2 * Sin(x) * Cos^2(x) + Sin(x) - 2 * Sin^3(x)
Now, notice that 2 * Sin(x) * Cos^2(x) can be further simplified using the identity:
Cos^2(x) = 1 - Sin^2(x)
Substitute this into the expression:
2 * Sin(x) * (1 - Sin^2(x)) + Sin(x) - 2 * Sin^3(x)
Now, we have a common term of Sin(x) in both terms. Factor it out:
Sin(x) * (2 - 2 * Sin^2(x) + 1 - 2 * Sin^2(x))
Now, combine like terms:
Sin(x) * (3 - 4 * Sin^2(x))
To find the value of the expression, we need to solve for Sin(x). Set the expression equal to the given value of √2/2:
Sin(x) * (3 - 4 * Sin^2(x)) = √2/2
Now, we know that Sin(45°) = √2/2. Therefore, set the expression inside the parentheses equal to 1 (since Sin(45°) = 1):
3 - 4 * Sin^2(x) = 1
Now, solve for Sin^2(x):
4 * Sin^2(x) = 2
Sin^2(x) = 1/2
Taking the square root of both sides:
Sin(x) = ±√(1/2) = ±√2/2
So, Sin(x) can be either √2/2 or -√2/2.
Therefore, the original expression Sin(2x) * Cos(x) + Sin(x) * Cos(2x) is equal to √2/2 for certain values of x (when Sin(x) = √2/2) but may not be true for all values of x.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili